skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trees have overlapping potential niches that extend beyond their realized niches
Tree species appear to prefer distinct climatic conditions, but the true nature of these preferences is obscured by species interactions and dispersal, which limit species’ ranges. We quantified realized and potential thermal niches of 188 North American tree species to conduct a continental-scale test of the architecture of niches. We found strong and consistent evidence that species occurring at thermal extremes occupy less than three-quarters of their potential niches, and species’ potential niches overlap at a mean annual temperature of ~12°C. These results clarify the breadth of thermal tolerances of temperate tree species and support the centrifugal organization of thermal niches. Accounting for the nonrealized components of ecological niches will advance theory and prediction in global change ecology.  more » « less
Award ID(s):
1906243 2019470
PAR ID:
10521665
Author(s) / Creator(s):
;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science
Volume:
385
Issue:
6704
ISSN:
0036-8075
Page Range / eLocation ID:
75 to 80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The interspecific trade‐off between growth versus mortality rates of tree species is thought to be driven by functional biology and to contribute to species ecological niche differentiation. Yet, functional trait variation is often not strongly correlated with growth and mortality, and few studies have investigated the relationships of both traits and niches, specifically encompassing above and belowground resources, to the trade‐off itself. These relationships are particularly relevant for seedlings, which must often survive resource limitation to reach larger size classes.We investigated the functional basis of the interspecific growth–mortality trade‐off and its relationship with ecological niches for seedlings of 14 tree species in a tropical forest in southwest China.We found evidence for an interspecific growth–mortality trade‐off at the seedling stage using 15 functional traits and 15 ecological niche variables. None of the organ‐level traits correlated with growth, mortality, nor the trade‐off, whereas specific stem length (SSL), a biomass allocation trait, was the only trait to have a significant correlation (positive). Moreover, light‐defined niches were not correlated with growth, mortality or the trade‐off, but soil‐defined niches did. Species at the faster growth/higher mortality end of the trade‐off were associated with higher fertility defined by lower soil bulk density and slope, and higher soil organic matter concentration and soil total nitrogen.Our findings indicate the importance of stem elongation and soil fertility for growth, mortality and their trade‐off at the seedling stage in this Asian tropical forest. Our findings contrast with analogous studies in neotropical forests showing the importance of photosynthesis‐related leaf traits related to insolation. Therefore, the functional drivers of demographic rates and trade‐offs, as well as their consequences for ecological niches, can vary among forests, likely owing to differences in biogeography, canopy disturbance rates, topography and soil properties. Moreover, the effects of functional trait variation on demographic rates and trade‐offs may be better revealed when biomass allocation is accounted for in a whole‐plant context. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Abstract Improved estimation of climate niches is critical, given climate change. Plant adaptation to climate depends on their physiological traits and their distributions, yet traits are rarely used to inform the estimation of species climate niches, and the power of a trait‐based approach has been controversial, given the many ecological factors and methodological issues that may result in decoupling of species' traits from their native climate.For 107 species across six ecosystems of California, we tested the hypothesis that mechanistic leaf and wood traits can robustly predict the mean of diverse species' climate distributions, when combining methodological improvements from previous studies, including standard trait measurements and sampling plants growing together at few sites. Further, we introduce an approach to quantify species' trait‐climate mismatch.We demonstrate a strong power to predict species mean climate from traits. As hypothesized, the prediction of species mean climate is stronger (and mismatch lower) when traits are sampled for individuals closer to species' mean climates.Improved resolution of species' climate niches based on mechanistic traits can importantly inform conservation of vulnerable species under the threat of climatic shifts in upcoming decades. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Diatoms generate nearly half of marine primary production and are comprised of a diverse array of species that are often morphologically cryptic or difficult to identify using light microscopy. Here, species composition and realized thermal niches of species in the diatom genus Thalassiosira were examined at the site of the Narragansett Bay (NBay) Long-Term Plankton Time Series using a combination of light microscopy (LM), high-throughput sequencing (HTS) of the 18S rDNA V4 region and historical records. Thalassiosira species were identified over 6 years using a combination of LM and DNA sequences. Sixteen Thalassiosira taxa were identified using HTS: nine were newly identified in NBay. Several newly identified species have small cell diameters and are difficult to identify using LM. However, they appeared frequently and thus may play a significant ecological role in NBay, particularly since their realized niches suggest they are eurythermal and able to tolerate the >25 °C temperature range of NBay. Four distinct species assemblages that grouped by season were best explained by surface water temperature. When compared to historical records, we found that the cold-water species Thalassiosira nordenskioeldii has decreased in persistence over time, suggesting that increasing surface water temperature has influenced the ecology of phytoplankton in NBay. 
    more » « less
  4. Ecological niches are increasingly appreciated as a long-term stable constraint on the geographic and temporal distributions of species, including species involved in disease transmission cycles (pathogens, vectors, hosts). Although considerable research effort has used correlative methodologies for characterizing niches, sampling effort (and the biases that this effort may or may not carry with it) considerations have generally not been incorporated explicitly into ecological niche modeling. In some cases, however, the sampling effort can be characterized explicitly, such as when hosts are tested for pathogens, as well as comparable situations such as when traps are deployed to capture particular species, etc. Here, we present simple methods for testing the hypothesis that non-randomness in occurrence or detection exists with respect to environmental dimensions (= a detectable signal of ecological niche); i.e., whether a pathogen occurs nonrandomly with respect to environment, given the occurrence and sampling of its host. We have implemented a set of R functions that presents an overall test for nonrandom occurrence with respect to a set of environmental dimensions, and, a posteriori, a set of exploratory tests that identify in which dimension(s) and in which direction or form the nonrandom occurrence is manifested. Our tools correctly detected signals of niche in most of our example cases. Although such signal may not be detectable in cases in which the niche of interest is broader than the universe sampled, such a possibility was correctly discarded in our analyses, preventing further interpretations. This kind of testing can constitute an initial step in a process that would conclude with development of a more typical ecological niche model. The particular advantage of the analyses proposed is that they consider the biases involved in sampling, testing, and reporting, in the context of nonrandom occurrence with respect to environment before proceeding to inferential and predictive steps. 
    more » « less
  5. Abstract Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co‐occurring tropical tree and liana species to test whether isoprene‐emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non‐emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene‐emitting species than for non‐emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt) or photosynthetic rates at Toptwere not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non‐emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co‐limit photosynthesis above Topt. Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co‐occurring non‐emitting species. 
    more » « less