This content will become publicly available on May 2, 2025
- Award ID(s):
- 2025234
- NSF-PAR ID:
- 10521811
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400703317
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Location:
- Honolulu HI USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
The capabilities of additive manufacturing (AM) open up designers’ solution space and enable them to build designs previously impossible through traditional manufacturing. To leverage AM, designers must not only generate creative ideas, but also propagate these ideas without discarding them in the early design stages. This emphasis on selecting creative ideas is particularly important in design for AM (DfAM), as ideas perceived as infeasible through the traditional design for manufacturing lens could now be feasible with AM. Several studies have discussed the role of DfAM in encouraging creative idea generation; however, there is a need to understand concept selection in DfAM. In this paper, we investigated the effect of two variations in DfAM education: 1) restrictive DfAM and 2) dual DfAM (opportunistic and restrictive) on students’ concept selection process. Specifically, we compared the creativity of the concepts generated by the students to the creativity of the concepts selected by them. Further, we performed qualitative analyses to explore the rationale provided by the students in making these design decisions. From the results, we see that teams from both educational groups select ideas of greater usefulness; however, only teams from the restrictive DfAM group select ideas of higher uniqueness and overall creativity. Further, we see that introducing students to opportunistic DfAM increases their emphasis on the complexity of designs when evaluating and selecting them. These results highlight the need for DfAM education to encourage AM designers to not just generate but also select creative ideas.more » « less
-
null (Ed.)Abstract The capabilities of additive manufacturing (AM) open up designers’ solution space and enable them to build designs previously impossible through traditional manufacturing (TM). To leverage this design freedom, designers must emphasize opportunistic design for AM (DfAM), i.e., design techniques that leverage AM capabilities. Additionally, designers must also emphasize restrictive DfAM, i.e., design considerations that account for AM limitations, to ensure that their designs can be successfully built. Therefore, designers must adopt a “dual” design mindset—emphasizing both, opportunistic and restrictive DfAM—when designing for AM. However, to leverage AM capabilities, designers must not only generate creative ideas for AM but also select these creative ideas during the concept selection stage. Design educators must specifically emphasize selecting creative ideas in DfAM, as ideas perceived as infeasible through the traditional design for manufacturing lens may now be feasible with AM. This emphasis could prevent creative but feasible ideas from being discarded due to their perceived infeasibility. While several studies have discussed the role of DfAM in encouraging creative idea generation, there is a need to investigate concept selection in DfAM. In this paper, we investigated the effects of four variations in DfAM education: (1) restrictive, (2) opportunistic, (3) restrictive followed by opportunistic (R-O), and (4) opportunistic followed by restrictive (O-R), on students’ concept selection process. We compared the creativity of the concepts generated by students to the creativity of the concepts they selected. The creativity of designs was measured on four dimensions: (1) uniqueness, (2) usefulness, (3) technical goodness, and (4) overall creativity. We also performed qualitative analyses to gain insight into the rationale provided by students when making their design decisions. From the results, we see that only teams from the restrictive and dual O-R groups selected ideas of higher uniqueness and overall creativity. In contrast, teams from the dual R-O DfAM group selected ideas of lower uniqueness compared with the mean uniqueness of ideas generated. Finally, we see that students trained in opportunistic DfAM emphasized minimizing build material the most, whereas those trained only in restrictive DfAM emphasized minimizing build time. These results highlight the need for DfAM education to encourage AM designers to not just generate creative ideas but also have the courage to select them for the next stage of design.more » « less
-
Abstract Engineering designers often generate multiple concepts to increase novelty and diversity among early solution candidates. Many past studies have focused on creating new concepts “from scratch;” however, designers at every level become fixated on their initial designs and struggle to generate different ideas. In line with prior work on design transformations, we propose a concept generation process of
iterative transformation to create new ideas by intentionally introducing major changes in form, nature, or function to an existing concept. A study of this concept generation process recruited beginning engineering students likely to benefit from an alternative to blank slate generation. Working alone in a single test session, students generated an initial concept for a presented design problem. Then, they were instructed to generate another concept by transforming their initial design into a new concept and repeated this process to create three more concepts. In a second design round, students were asked to consider 7 Design Heuristics strategies to prompt possible transformations for their concepts. Beginning again with their initial concept, each student generated another set of four transformed concepts using iterative transformation. The analysis considered 60 initial concepts and 476 transformed concepts with and without the use of Design Heuristics. We createdDesign Transformation Diagrams to observe links (sequential, non-sequential, or both) between transformed concepts within each set of four concepts and between the two sets. Three patterns across the diagrams were identified: Fully Sequential, Sequential with Deviation, and Divergent. When aided by Design Heuristics, transformations included more non-sequential links, suggesting synthesis, refinement, and extension of other prior concepts, and resulting in more varied and distinct transformations. This iterative transformation process may support more diversity in concepts generated through a deeper exploration of related concepts without requiring an escape from the influence of existing concepts. Concept generation strategies like Design Heuristics may support engineering students as they learn to expand their early exploration of design concepts. -
Creative outcomes require designers to continuously frame the problem space and generate solutions, resulting in the co-evolution of problem and solution. Little work has addressed the value dimensions of design activity with regard to this co-evolutionary process and the role of the designer in acting upon specific and value-laden framings and/or solutions. In this paper, we identify how triads of student designers from user experience (UX) and industrial engineering (IE) disciplines frame the problem space and generate solutions, foregrounding the ethical character of their judgments in response to an ethically-nuanced design task. Using sequence analysis to analyze the lab protocol data, we describe the frequency and interconnectedness of process moves that lead the design team towards unethical outcomes. Based on our findings, we call for additional attention to ethical dimensions of problem-solution co-evolution, and identify key interaction patterns among designers that lead towards unethical outcomes.more » « less
-
With idle games, active withdrawal from the game comprises an essential part of gameplay as players wait for the game state to change over time. This mode of interaction is paradigmatic for the change of roles technologies have in our lives. However, the design elements of idle games are less well understood, particularly from the perspectives of developers. We interviewed six designers of six different popular idle games and inquired into their individual approaches. Via thematic analysis, we refine and expand on existing definitions of idle games as a genre, shed light on ethically charged practices of care in their design, and identify shared core characteristics between the games and processes. We then generate intermediate-level knowledge on the design of idle games. Our work contributes designers' perspectives on idle games and their design to a growing body of literature on the genre.more » « less