Abstract Changes in the Atlantic Meridional Overturning Circulation (AMOC) are believed to have affected the cycling of carbon isotopes in both the ocean and the atmosphere. However, understanding how AMOC changes of Dissolved Inorganic Carbon (DIC) distributions in the ocean is limited, since models do not typically decompose the various processes that affect . Here, a new decomposition is applied to idealized simulations of an AMOC collapse, both for glacial and preindustrial conditions. The decomposition explicitly calculates the preformed and regenerated components of and separates between physical and biological effects. An AMOC collapse leads to a large and rapid decrease in in the North Atlantic, which is due to, in about equal parts, accumulation of remineralized organic matter and changes in preformed , both in glacial and preindustrial simulations. In the Pacific, Indian, and Southern Oceans increases by a smaller magnitude. This increase is dominated by changes in preformed in the glacial simulation and remineralized in the preindustrial simulation. An extensive evaluation of the decomposition shows that its errors are small in most cases, especially for large basin‐wide changes, whereas for small, local or global changes errors can be substantial. In contrast, approximations of the remineralized component based on Apparent Oxygen Utilization have large errors in most cases and are generally unreliable because they include contributions from oxygen disequilibrium.
more »
« less
This content will become publicly available on December 1, 2026
Impact of Atlantic Meridional Overturning Circulation Collapse on Dissolved Inorganic Carbon Components in the Ocean
The Atlantic Meridional Overturning Circulation (AMOC) impacts temperatures, ecosystems, and the carbon cycle. However, AMOC effects on Earth's carbon cycle remains poorly understood, in part because contributions of different physical and biological mechanisms that impact carbon storage in the ocean are not typically diagnosed in climate models. Here, we explore modeled effects of AMOC shutdowns on ocean Dissolved Inorganic Carbon (DIC) by applying a new decomposition that explicitly calculates preformed and regenerated DIC components and separates physical and biological contributions. An extensive evaluation in transient simulations finds that the method is accurate, especially for basin‐wide changes, whereas errors can be significant at global and local scales. In contrast, estimates of respired carbon based on Apparent Oxygen Utilization lead to large errors and are generally not reliable. In response to a shutdown of the AMOC under Last Glacial Maximum (LGM) background climate, ocean carbon increases and then decreases, leading to opposite changes in atmospheric carbon dioxide (CO2). DIC changes are dominated by opposing changes in biological carbon storage. Whereas regenerated components increase in the Atlantic and dominate the initial increase in global ocean DIC until model year 1000, preformed components decrease in the other ocean basins and dominate the long‐term DIC decrease until year 4000. Biological disequilibrium is an important contribution to preformed carbon changes. Biological saturation carbon decreases in the Pacific, Indian, and Southern Oceans due to a decrease in surface alkalinity. The spatial patterns of the DIC components and their changes in response to an AMOC collapse are presented.
more »
« less
- Award ID(s):
- 1924215
- PAR ID:
- 10656892
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 39
- Issue:
- 12
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Carré, Matthieu (Ed.)Despite their importance for Earth’s climate and paleoceanography, the cycles of carbon (C) and its isotope13C in the ocean are not well understood. Models typically do not decompose C and13C storage caused by different physical, biological, and chemical processes, which makes interpreting results difficult. Consequently, basic observed features, such as the decreased carbon isotopic signature (δ13CDIC) of the glacial ocean remain unexplained. Here, we review recent progress in decomposing Dissolved Inorganic Carbon (DIC) into preformed and regenerated components, extend a precise and complete decomposition to δ13CDIC, and apply it to data-constrained model simulations of the Preindustrial (PI) and Last Glacial Maximum (LGM) oceans. Regenerated components, from respired soft-tissue organic matter and dissolved biogenic calcium carbonate, are reduced in the LGM, indicating a decrease in the active part of the biological pump. Preformed components increase carbon storage and decrease δ13CDICby 0.55 ‰ in the LGM. We separate preformed into saturation and disequilibrium components, each of which have biological and physical contributions. Whereas the physical disequilibrium in the PI is negative for both DIC and δ13CDIC, and changes little between climate states, the biological disequilibrium is positive for DIC but negative for δ13CDIC, a pattern that is magnified in the LGM. The biological disequilibrium is the dominant driver of the increase in glacial ocean C and the decrease in δ13CDIC, indicating a reduced sink of biological carbon. Overall, in the LGM, biological processes increase the ocean’s DIC inventory by 355 Pg more than in the PI, reduce its mean δ13CDICby an additional 0.52 ‰, and contribute 60 ppm to the lowering of atmospheric CO2. Spatial distributions of the δ13CDICcomponents are presented. Commonly used approximations based on apparent oxygen utilization and phosphate are evaluated and shown to have large errors.more » « less
-
Abstract All else equal, if the ocean's “biological [carbon] pump” strengthens, the dissolved oxygen (O2) content of the ocean interior declines. Confidence is now high that the ocean interior as a whole contained less oxygen during the ice ages. This is strong evidence that the ocean's biological pump stored more carbon in the ocean interior during the ice ages, providing the core of an explanation for the lower atmospheric carbon dioxide (CO2) concentrations of the ice ages. Vollmer et al. (2022,https://doi.org/10.1029/2021PA004339) combine proxies for the oxygen and nutrient content of bottom waters to show that the ocean nutrient reservoir was more completely harnessed by the biological pump during the Last Glacial Maximum, with an increase in the proportion of dissolved nutrients in the ocean interior that were “regenerated” (transported as sinking organic matter from the ocean surface to the interior) rather than “preformed” (transported to the interior as dissolved nutrients by ocean circulation). This points to changes in the Southern Ocean, the dominant source of preformed nutrients in the modern ocean, with an apparent additional contribution from a decline in the preformed nutrient content of North Atlantic‐formed interior water. Vollmer et al. also find a lack of LGM‐to‐Holocene difference in the preformed13C/12C ratio of dissolved inorganic carbon. This finding may allow future studies to resolve which of the proposed Southern Ocean mechanisms was most responsible for enhanced ocean CO2storage during the ice ages: (a) coupled changes in ocean circulation and biological productivity, or (b) physical limitations on air‐sea gas exchange.more » « less
-
Abstract The oceanic absorption of anthropogenic carbon dioxide (CO2) is expected to continue in the following centuries, but the processes driving these changes remain uncertain. We studied these processes in a simulation of future changes in global climate and the carbon cycle following the RCP8.5 high emission scenario. The simulation shows increasing oceanic uptake of anthropogenic CO2peaking towards the year 2080 and then slowing down but remaining significant in the period up to the year 2300. These multi‐century changes in uptake are dominated by changes in sea‐air CO2fluxes in the tropical and southern oceans. In the tropics, reductions in upwelling and vertical gradients of dissolved carbon will reduce the vertical advection of carbon‐rich thermocline waters, suppressing natural outgassing of CO2. In the Southern Ocean, the upwelling of waters with relatively low dissolved carbon keeps the surface carbon relatively low, enhancing the uptake of CO2in the next centuries. The slowdown in CO2uptake in the subsequent centuries is caused by the decrease in CO2solubility and storage capacity in the ocean due to ocean warming and changes in carbon chemistry. A collapse of the Atlantic Meridional Overturning Circulation (AMOC) predicted for the next century causes a substantial reduction in the uptake of anthropogenic CO2. In sum, predicting multi‐century changes in the global carbon cycle depends on future changes in carbon chemistry along with changes in oceanic and atmospheric circulations in the Southern and tropical oceans, together with a potential collapse of the AMOC.more » « less
-
null (Ed.)Abstract Climate models consistently project (i) a decline in the formation of North Atlantic Deep Water (NADW) and (ii) a strengthening of the Southern Hemisphere westerly winds in response to anthropogenic greenhouse gas forcing. These two processes suggest potentially conflicting tendencies of the Atlantic meridional overturning circulation (AMOC): a weakening AMOC due to changes in the North Atlantic but a strengthening AMOC due to changes in the Southern Ocean. Here we focus on the transient evolution of the global ocean overturning circulation in response to a perturbation to the NADW formation rate. We propose that the adjustment of the Indo-Pacific overturning circulation is a critical component in mediating AMOC changes. Using a hierarchy of ocean and climate models, we show that the Indo-Pacific overturning circulation provides the first response to AMOC changes through wave processes, whereas the Southern Ocean overturning circulation responds on longer (centennial to millennial) time scales that are determined by eddy diffusion processes. Changes in the Indo-Pacific overturning circulation compensate AMOC changes, which allows the Southern Ocean overturning circulation to evolve independently of the AMOC, at least over time scales up to many decades. In a warming climate, the Indo-Pacific develops an overturning circulation anomaly associated with the weakening AMOC that is characterized by a northward transport close to the surface and a southward transport in the deep ocean, which could effectively redistribute heat between the basins. Our results highlight the importance of interbasin exchange in the response of the global ocean overturning circulation to a changing climate.more » « less
An official website of the United States government
