Abstract Targeted gene delivery to the brain is a critical tool for neuroscience research and has significant potential to treat human disease. However, the site-specific delivery of common gene vectors such as adeno-associated viruses (AAVs) is typically performed via invasive injections, which limit its applicable scope of research and clinical applications. Alternatively, focused ultrasound blood-brain-barrier opening (FUS-BBBO), performed noninvasively, enables the site-specific entry of AAVs into the brain from systemic circulation. However, when used in conjunction with natural AAV serotypes, this approach has limited transduction efficiency and results in substantial undesirable transduction of peripheral organs. Here, we use high throughput in vivo selection to engineer new AAV vectors specifically designed for local neuronal transduction at the site of FUS-BBBO. The resulting vectors substantially enhance ultrasound-targeted gene delivery and neuronal tropism while reducing peripheral transduction, providing a more than ten-fold improvement in targeting specificity in two tested mouse strains. In addition to enhancing the only known approach to noninvasively target gene delivery to specific brain regions, these results establish the ability of AAV vectors to be evolved for specific physical delivery mechanisms.
more »
« less
Targeting diffuse midline gliomas: The promise of focused ultrasound-mediated blood-brain barrier opening
Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine glioma, have among the highest mortality rates of all childhood cancers, despite recent advancements in cancer therapeutics. This is partly because, unlike some CNS tumors, the blood-brain barrier (BBB) of DMG tumor vessels remains intact. The BBB prevents the permeation of many molecular therapies into the brain parenchyma, where the cancer cells reside. Focused ultrasound (FUS) with microbubbles has recently emerged as an innovative and exciting technology that non-invasively permeabilizes the BBB in a small focal region with millimeter precision. In this review, current treatment methods and biological barriers to treating DMGs are discussed. State-of-the-art FUS-mediated BBB opening is then examined, with a focus on the effects of various ultrasound parameters and the treatment of DMGs.
more »
« less
- Award ID(s):
- 2022138
- PAR ID:
- 10522011
- Publisher / Repository:
- Journal of Controlled Release
- Date Published:
- Journal Name:
- Journal of Controlled Release
- Volume:
- 365
- Issue:
- C
- ISSN:
- 0168-3659
- Page Range / eLocation ID:
- 412 to 421
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Following traumatic brain injury (TBI), secondary brain damage due to chronic inflammation is the most predominant cause of the delayed onset of mood and memory disorders. Currently no therapeutic approach is available to effectively mitigate secondary brain injury after TBI. One reason is the blood–brain barrier (BBB), which prevents the passage of most therapeutic agents into the brain. Peptides have been among the leading candidates for CNS therapy due to their low immunogenicity and toxicity, bioavailability, and ease of modification. In this study, we demonstrated that non-invasive intranasal (IN) administration of KAFAK, a cell penetrating anti-inflammatory peptide, traversed the BBB in a murine model of diffuse, moderate TBI. Notably, KAFAK treatment reduced the production of proinflammatory cytokines that contribute to secondary injury. Furthermore, behavioral tests showed improved or restored neurological, memory, and locomotor performance after TBI in KAFAK-treated mice. This study demonstrates KAFAK’s ability to cross the blood–brain barrier, to lower proinflammatory cytokines in vivo, and to restore function after a moderate TBI.more » « less
-
Gene therapy holds tremendous potential for the treatment of incurable brain diseases including Alzheimer's disease (AD), stroke, glioma, and Parkinson's disease. The main challenge is the lack of effective gene delivery systems traversing the blood–brain barrier (BBB), due to the complex microvessels present in the brain which restrict substances from the circulating blood passing through. Recently, increasing efforts have been made to develop promising gene carriers for brain-related disease therapies. One such development is the self-assembled heavy chain ferritin (HFn) nanoparticles (NPs). HFn NPs have a unique hollow spherical structure that can encapsulate nucleic acid drugs (NADs) and specifically bind to cancer cells and BBB endothelial cells (BBB ECs) via interactions with the transferrin receptor 1 (TfR1) overexpressed on their surfaces, which increases uptake through the BBB. However, the gene-loading capacity of HFn is restricted by its limited interior volume and negatively charged inner surface; therefore, these drawbacks have prompted the demand for strategies to remould the structure of HFn. In this work, we analyzed the three-dimensional (3D) structure of HFn using Chimera software (v 1.14) and developed a class of internally cationic HFn variants (HFn+ NPs) through arginine mutation on the lumenal surface of HFn. These HFn+ NPs presented powerful electrostatic forces in their cavities, and exhibited higher gene encapsulation efficacy than naive HFn. The top-performing candidate, HFn2, effectively delivered siRNA to glioma cells after traversing the BBB and achieved the highest silencing efficacy among HFn+ NPs. Overall, our findings demonstrate that HFn+ NPs obtained by this genetic engineering method provide critical insights into the future development of nucleic acid delivery carriers with BBB-crossing ability.more » « less
-
Abstract Efficient delivery of biomolecules into neurons has significant impacts on therapeutic applications in the central nervous system (CNS) and fundamental neuroscience research. Existing viral and non‐viral delivery methods often suffer from inefficient intracellular access due to the endocytic pathway. Here, a neuron‐targeting and direct cytosolic delivery platform is discovered by using a 15‐amino‐acid peptide, termed the N1 peptide, which enables neuron‐specific targeting and cytosolic delivery of functional biomolecules. The N1 peptide initially binds hyaluronan in the extracellular matrix and subsequently passes the membrane of neurons without being trapped into endosome. This mechanism facilitates the efficient delivery of cell‐impermeable and photo‐stable fluorescent dye for super‐resolution imaging of dendritic spines, and functional proteins, such as Cre recombinase, for site‐specific genome modification. Importantly, the N1 peptide exhibits robust neuronal specificity across diverse species, including mice, rats, tree shrews, and zebra finches. Its targeting capability is further demonstrated through various administration routes, including intraparenchymal, intrathecal, and intravenous (i.v.) injections after blood‐brain barrier (BBB) opening with focused ultrasound (FUS). These findings establish the N1 peptide as a versatile and functional platform with significant potential for bioimaging and advanced therapeutic applications.more » « less
-
null (Ed.)Stroke is an overwhelming neurological disease with very limited treatment options. As blood-brain barrier (BBB) integrity is well-implicated in the prevention of brain injury, its regulation may prove beneficial for stroke patients. BBB cerebro-vascular endothelial cells primarily utilize mitochondria as their energy-producing source, and mitochondrial function has revealed importance in outcomes for tissue post-stroke. In this review, bioenergetics in relation to BBB permeability in stroke is discussed. Moreover, what causes mitochondrial dysfunction following stroke is explored.more » « less
An official website of the United States government

