skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Dirichlet Model of Alignment Cost in Mixed-Membership Unsupervised Clustering
Mixed-membership unsupervised clustering is widely used to extract informative patterns from data in many application areas. For a shared dataset, the stochasticity and unsupervised nature of clustering algorithms can cause difficulties in comparing clustering results produced by different algorithms, or even multiple runs of the same algorithm, as outcomes can differ owing to permutation of the cluster labels or genuine differences in clustering results. Here, with a focus on inference of individual genetic ancestry in population-genetic studies, we study the cost of misalignment of mixed-membership unsupervised clustering replicates under a theoretical model of cluster memberships. Using Dirichlet distributions to model membership coefficient vectors, we provide theoretical results quantifying the alignment cost as a function of the Dirichlet parameters and the Hamming permutation difference between replicates. For fixed Dirichlet parameters, the alignment cost is seen to increase with the Hamming distance between permutations. Datasets with low variance across individuals of membership coefficients for specific clusters generally produce high misalignment costs—so that a single optimal permutation has far lower cost than suboptimal permutations. Higher variability in data, as represented by greater variance of membership coefficients, generally results in alignment costs that are similar between the optimal permutation and suboptimal permutations. We demonstrate the application of the theoretical results to data simulated under the Dirichlet model, as well as to membership estimates from inference of human-genetic ancestry. The results can contribute to improving cluster alignment algorithms that seek to find optimal permutations of replicates. Supplementary materials for this article are available online.  more » « less
Award ID(s):
2116322
PAR ID:
10522048
Author(s) / Creator(s):
; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Journal of Computational and Graphical Statistics
Volume:
32
Issue:
3
ISSN:
1061-8600
Page Range / eLocation ID:
1145 to 1159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Clustering is a fundamental unsupervised learning problem where a data-set is partitioned into clusters that consist of nearby points in a metric space. A recent variant, fair clustering, associates a color with each point representing its group membership and requires that each color has (approximately) equal representation in each cluster to satisfy group fairness. In this model, the cost of the clustering objective increases due to enforcing fairness in the algorithm. The relative increase in the cost, the “price of fairness,” can indeed be unbounded. Therefore, in this paper we propose to treat an upper bound on the clustering objective as a constraint on the clustering problem, and to maximize equality of representation subject to it. We consider two fairness objectives: the group utilitarian objective and the group egalitarian objective, as well as the group leximin objective which generalizes the group egalitarian objective. We derive fundamental lower bounds on the approximation of the utilitarian and egalitarian objectives and introduce algorithms with provable guarantees for them. For the leximin objective we introduce an effective heuristic algorithm. We further derive impossibility results for other natural fairness objectives. We conclude with experimental results on real-world datasets that demonstrate the validity of our algorithms. 
    more » « less
  2. Clustering is a fundamental unsupervised learning problem where a dataset is partitioned into clusters that consist of nearby points in a metric space. A recent variant, fair clustering, associates a color with each point representing its group membership and requires that each color has (approximately) equal representation in each cluster to satisfy group fairness. In this model, the cost of the clustering objective increases due to enforcing fairness in the algorithm. The relative increase in the cost, the `''price of fairness,'' can indeed be unbounded. Therefore, in this paper we propose to treat an upper bound on the clustering objective as a constraint on the clustering problem, and to maximize equality of representation subject to it. We consider two fairness objectives: the group utilitarian objective and the group egalitarian objective, as well as the group leximin objective which generalizes the group egalitarian objective. We derive fundamental lower bounds on the approximation of the utilitarian and egalitarian objectives and introduce algorithms with provable guarantees for them. For the leximin objective we introduce an effective heuristic algorithm. We further derive impossibility results for other natural fairness objectives. We conclude with experimental results on real-world datasets that demonstrate the validity of our algorithms. 
    more » « less
  3. ShuffleNet is a state-of-the-art light weight convolutional neural network architecture. Its basic operations include group, channelwise convolution and channel shuffling. However, channel shuffling is manually designed on empirical grounds. Mathematically, shuffling is a multiplication by a permutation matrix. In this paper, we propose to automate channel shuffling by learning permutation matrices in network training. We introduce an exact Lipschitz continuous non-convex penalty so that it can be incorporated in the stochastic gradient descent to approximate permutation at high precision. Exact permutations are obtained by simple rounding at the end of training and are used in inference. The resulting network, referred to as AutoShuffleNet, achieved improved classification accuracies on data from CIFAR-10, CIFAR-100 and ImageNet while preserving the inference costs of ShuffleNet. In addition, we found experimentally that the standard convex relaxation of permutation matrices into stochastic matrices leads to poor performance. We prove theoretically the exactness (error bounds) in recovering permutation matrices when our penalty function is zero (very small). We present examples of permutation optimization through graph matching and two-layer neural network models where the loss functions are calculated in closed analytical form. In the examples, convex relaxation failed to capture permutations whereas our penalty succeeded. 
    more » « less
  4. We provide a new bi-criteria O(log2k) competitive algorithm for explainable k-means clustering. Explainable k-means was recently introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). It is described by an easy to interpret and understand (threshold) decision tree or diagram. The cost of the explainable k-means clustering equals to the sum of costs of its clusters; and the cost of each cluster equals the sum of squared distances from the points in the cluster to the center of that cluster. The best non bi-criteria algorithm for explainable clustering O(k) competitive, and this bound is tight. Our randomized bi-criteria algorithm constructs a threshold decision tree that partitions the data set into (1+δ)k clusters (where δ∈(0,1) is a parameter of the algorithm). The cost of this clustering is at most O(1/δ⋅log2k) times the cost of the optimal unconstrained k-means clustering. We show that this bound is almost optimal. 
    more » « less
  5. We propose a statistical framework for clustering multiple time series that exhibit nonlinear dynamics into an a-priori-unknown number of sub-groups that each comprise time series with similar dynamics. Our motivation comes from neuroscience where an important problem is to identify, within a large assembly of neurons, sub-groups that respond similarly to a stimulus or contingency. In the neural setting, conditioned on cluster membership and the parameters governing the dynamics, time series within a cluster are assumed independent and generated according to a nonlinear binomial state-space model. We derive a Metropolis-within-Gibbs algorithm for full Bayesian inference that alternates between sampling of cluster membership and sampling of parameters of interest. The Metropolis step is a PMMH iteration that requires an unbiased, low variance estimate of the likelihood function of a nonlinear state- space model. We leverage recent results on controlled sequential Monte Carlo to estimate likelihood functions more efficiently compared to the bootstrap particle filter. We apply the framework to time series acquired from the prefrontal cortex of mice in an experiment designed to characterize the neural underpinnings of fear. 
    more » « less