skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Subseasonal Forecast Skill of Evaporative Demand, Soil Moisture, and Flash Drought Onset from Two Dynamic Models over the Contiguous United States
Abstract Flash droughts are rapidly developing subseasonal climate extreme events that are manifested as suddenly decreased soil moisture, driven by increased evaporative demand and/or sustained precipitation deficits. Over each climate region in the contiguous United States (CONUS), we evaluated the forecast skill of weekly root-zone soil moisture (RZSM), evaporative demand (ETo), and relevant flash drought (FD) indices derived from two dynamic models [Goddard Earth Observing System model V2p1 (GEOS-V2p1) and Global Ensemble Forecast System version 12 (GEFSv12)] in the Subseasonal Experiment (SubX) project between years 2000 and 2019 against three reference datasets: Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2), North American Land Data Assimilation System, phase 2 (NLDAS-2), and GEFSv12 reanalysis. The EToand its forcing variables at lead week 1 have moderate-to-high anomaly correlation coefficient (ACC) skill (∼0.70–0.95) except downwelling shortwave radiation, and by weeks 3–4, predictability was low for all forcing variables (ACC < 0.5). RZSM (0–100 cm) for model GEFSv12 showed high skill at lead week 1 (∼0.7–0.85 ACC) in the High Plains, West, Midwest, and South CONUS regions when evaluated against GEFSv12 reanalysis but lower skill against MERRA-2 and NLDAS-2 and ACC skill are still close to 0.5 for lead weeks 3–4, better than EToforecasts. GEFSv12 analysis has not been evaluated against in situ observations and has substantial RZSM anomaly differences when compared to NLDAS-2, and our analysis identified GEFSv12 reforecast prediction limit, which can maximally achieve ACC ∼0.6 for RZSM forecasts between lead weeks 3 and 4. Analysis of major FD events reveals that GEFSv12 reforecast inconsistently captured the correct location of atmospheric and RZSM anomalies contributing to FD onset, suggesting the needs for improving the dynamic models’ assimilation and initialization procedures to improve subseasonal FD predictability. Significance StatementFlash droughts are rapidly developing climate extremes which reduce soil moisture through enhanced evaporative demand and precipitation deficits, and these events can have large impacts on the ecosystem and crop health. We evaluated the subseasonal forecast skill of soil moisture and evaporative demand against three reanalysis datasets and found that evaporative demand skill was similar between forecasts and reanalyses while soil moisture skill is dependent on the reference dataset. Skill of evaporative demand decreases rapidly after week 1, while soil moisture skill declines more slowly after week 1. Case studies for the 2012, 2017, and 2019 United States flash droughts identified that forecasts could capture rapid decreases in soil moisture in some regions but not consistently, implying that long-lead forecasts still need improvements before being used in early warning systems. Improvements in flash drought predictability at longer lead times will require less biased initial conditions, better model parameterizations, and improved representations of large-scale teleconnections.  more » « less
Award ID(s):
2144293 1922687
PAR ID:
10522094
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
25
Issue:
7
ISSN:
1525-755X
Format(s):
Medium: X Size: p. 965-990
Size(s):
p. 965-990
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The effect of machine learning and other enhancements on statistical–dynamical forecasts of soil moisture (0–10 and 0–100 cm) and a reference evapotranspiration fraction [evaporative stress index (ESI)] on subseasonal time scales (15–28 days) are explored. The predictors include the current and past land surface conditions and dynamical model hindcasts from the Subseasonal to Seasonal Prediction project (S2S). When the methods are enhanced with machine learning and other improvements, the increases in skill are almost exclusively coming from predictors drawn from observations of current and past land surface states. This suggests that operational S2S flash drought forecasts should focus on optimizing use of information on current conditions rather than on integrating dynamically based forecasts, given the current state of knowledge. Nonlinear machine learning methods lead to improved skill over linear methods for soil moisture but not for ESI. Improvements for both soil moisture and ESI are realized by increasing the sample size by including surrounding grid points in training and increasing the number of predictors. In addition, all the improvements in the soil moisture forecasts predominantly impact soil moistening rather than soil drying—i.e., prediction of conditions moving away from drought rather than into drought—especially when the initial soil state is drier than normal. The physical reasons for the nonlinear machine learning improvements are also explored. Significance StatementRapidly intensifying droughts pose extra challenges for predictability. Here, dynamical forecast model output is combined with nonlinear machine learning methods to improve forecasts of rapid changes in soil moisture and the evaporative stress index (ESI). 
    more » « less
  2. Abstract The increasing complexity and impacts of fire seasons in the United States have prompted efforts to improve early warning systems for wildland fire management. Outlooks of potential fire activity at lead‐times of several weeks can help in wildland fire resource allocation as well as complement short‐term meteorological forecasts for ongoing fire events. Here, we describe an experimental system for developing downscaled ensemble‐based subseasonal forecasts for the contiguous US using NCEP's operational Climate Forecast System version 2 model. These forecasts are used to calculate forecasted fire danger indices from the United States (US) National Fire Danger Rating System in addition to forecasts of evaporative demand. We further illustrate the skill of subseasonal forecasts on weekly timescales using hindcasts from 2011 to 2021. Results show that while forecast skill degrades with time, statistically significant week 3 correlative skill was found for 76% and 30% of the contiguous US for Energy Release Component and evaporative demand, respectively. These results highlight the potential value of experimental subseasonal forecasts in complementing existing information streams in weekly‐to‐monthly fire business decision making for suppression‐based decisions and geographic reallocation of resources during the fire season, as well for proactive fire management actions outside of the core fire season. 
    more » « less
  3. Abstract Recent years have seen growing appreciation that rapidly intensifying flash droughts are significant climate hazards with major economic and ecological impacts. This has motivated efforts to inventory, monitor, and forecast flash drought events. Here we consider the question of whether the term “flash drought” comprises multiple distinct classes of event, which would imply that understanding and forecasting flash droughts might require more than one framework. To do this, we first extend and evaluate a soil moisture volatility–based flash drought definition that we introduced in previous work and use it to inventory the onset dates and severity of flash droughts across the contiguous United States (CONUS) for the period 1979–2018. Using this inventory, we examine meteorological and land surface conditions associated with flash drought onset and recovery. These same meteorological and land surface conditions are then used to classify the flash droughts based on precursor conditions that may represent predictable drivers of the event. We find that distinct classes of flash drought can be diagnosed in the event inventory. Specifically, we describe three classes of flash drought: “dry and demanding” events for which antecedent evaporative demand is high and soil moisture is low, “evaporative” events with more modest antecedent evaporative demand and soil moisture anomalies, but positive antecedent evaporative anomalies, and “stealth” flash droughts, which are different from the other two classes in that precursor meteorological anomalies are modest relative to the other classes. The three classes exhibit somewhat different geographic and seasonal distributions. We conclude that soil moisture flash droughts are indeed a composite of distinct types of rapidly intensifying droughts, and that flash drought analyses and forecasts would benefit from approaches that recognize the existence of multiple phenomenological pathways. 
    more » « less
  4. Abstract Probabilistic forecasts of changes in soil moisture and an Evaporative Stress Index (ESI) on sub-seasonal time scales over the contiguous U.S. are developed. The forecasts use the current land surface conditions and numerical weather prediction forecasts from the Sub-seasonal to Seasonal (S2S) Prediction Project. Changes in soil moisture are quite predictable 8-14 days in advance with 50% or more of the variance explained over the majority of the contiguous U.S.; however, changes in ESI are significantly less predictable. A simple red noise model of predictability shows that the spatial variations in forecast skill are primarily a result of variations in the autocorrelation, or persistence, of the predicted variable, especially for the ESI. The difference in overall skill between soil moisture and ESI, on the other hand, is due to the greater soil moisture predictability by the numerical model forecasts. As the forecast lead time increases from 8-14 days to 15-28 days, however, the autocorrelation dominates the soil moisture and ESI differences as well. An analysis of modelled transpiration, and bare soil and canopy water evaporation contributions to total evaporation, suggests improvements to the ESI forecasts can be achieved by estimating the relative contributions of these components to the initial ESI state. The importance of probabilistic forecasts for reproducing the correct probability of anomaly intensification is also shown. 
    more » « less
  5. Abstract Flash Drought (FD) has garnered much attention in recent years, with significant advancements in the indicators applied for identifying these rapidly intensifying events. However, the difference in existing FD definitions and methodologies among research communities and the choice of different data sources underscores the importance of addressing the uncertainties associated with the global FD characteristics and their drivers. This study compares two key FD indicators derived based on evaporative stress ratio (ESR) and root‐zone soil‐moisture (RZSM) using three different data sources to investigate the uncertainties in global FD frequency and intensity (speed), and the influencing drivers. The results suggest that such disparities are significant in the two FD indicators across different climate regions of the globe. The results highlight varying spatial drivers of FD frequency, intensity, and their evolution, potentially linked to background aridity. Changes in precipitation, temperature, vapor pressure deficit, and soil‐temperature coupling play an important role with a cascading (concurrent) impact on the evolution of FD based on RZSM (ESR). The relationship between ESR and RZSM fails to explain most of the variance in each of these indicators specific to the FD episodes, especially in the transitional and humid climate regimes. Overall, the results highlight the necessity of more nuanced methodologies for deriving FD indicators that can efficiently couple the rapid soil‐moisture depletion rates in deeper layers with changes in atmospheric evaporative demand which has direct implications on vegetation health. 
    more » « less