Abstract Phenotypic divergence is an important consequence of restricted gene flow in insular populations. This divergence can be challenging to detect when it occurs through subtle shifts in morphological traits, particularly in traits with complex geometries, like insect wing venation. Here, we employed geometric morphometrics to assess the extent of variation in wing venation patterns across reproductively isolated populations of the social sweat bee,Halictus tripartitus. We examined wing morphology of specimens sampled from a reproductively isolated population ofH. tripartituson Santa Cruz Island (Channel Islands, Southern California). Our analysis revealed significant differentiation in wing venation in this island population relative to conspecific mainland populations. We additionally found that this population‐level variation was less pronounced than the species‐level variation in wing venation among three sympatric congeners native to the region,Halictus tripartitus,Halictus ligatus, andHalictus farinosus. Together, these results provide evidence for subtle phenotypic divergence in an island bee population. More broadly, these results emphasize the utility and potential of wing morphometrics for large‐scale assessment of insect population structure.
more »
« less
Mapping Stochastic Collective Behavior Distinguishes Subtle Mutations in Social Bacteria
The genotype-to-phenotype problem (G2P) for multicellular development asks how genetic inputs control collective phenotypic outputs. However, this is a challenging problem due to gene redundancy and stochasticity, causing mutations to have subtle phenotypic effects and replicates to display significant variation. We approach this problem using the model organism Myxococcus xanthus, a motile self-organizing bacterium that forms three-dimensional cell aggregates that mature into spore-filled fruiting bodies when under starvation stress. We develop a high-throughput imaging method using three-dimensional-printed microscopes to efficiently collect large phenotypic datasets. Our automated methods for analysis and visualization produce a map of phenotypic variation in M. xanthus development. We demonstrate that even subtle effects on developmental dynamics caused by mutation can be identified, discriminated, characterized, and given statistical significance, with implications for future gene annotation studies and the effect of environmental factors on G2P.
more »
« less
- PAR ID:
- 10522145
- Publisher / Repository:
- PRX Life
- Date Published:
- Journal Name:
- PRX Life
- Volume:
- 1
- Issue:
- 2
- ISSN:
- 2835-8279
- Subject(s) / Keyword(s):
- fruiting bodies, phenotypes
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The environment experienced during embryonic development is a rich source of phenotypic variation, as environmental signals have the potential to both inform adaptive plastic responses and disrupt normal developmental programs. Environment-by-embryo interactions are particularly consequential for species with temperature-dependent sex determination, a mode of sex determination common in non-avian reptiles and fish, in which thermal cues during a discrete period of development drive the formation of either an ovary or a testis. Here we examine the impact of thermal variation during incubation in combination with developmental exposure to a common endocrine-disrupting contaminant on fitness-related hatchling traits in the American alligator (Alligator mississippiensis), a species with temperature-dependent sex determination. Using a factorial design, we exposed field-collected eggs to five thermal profiles (three constant temperatures, two fluctuating temperatures) and two environmentally relevant doses of the pesticide metabolite dichlorodiphenyldichloroethylene; and we quantified incubation duration, sex ratios, hatchling morphometric traits, and growth (9–10 days post-hatch). Whereas dichlorodiphenyldichloroethylene exposure did not generally affect hatchling traits, constant and fluctuating temperatures produced diverse phenotypic effects. Thermal fluctuations led to subtle changes in incubation duration and produced shorter hatchlings with smaller heads when compared to the constant temperature control. Warmer, male-promoting incubation temperatures resulted in larger hatchlings with more residual yolk reserves when compared to cooler, female-promoting temperatures. Together, these findings advance our understanding of how complex environmental factors interact with developing organisms to generate phenotypic variation and raise questions regarding the mechanisms connecting variable thermal conditions to responses in hatchling traits and their evolutionary implications for temperature-dependent sex determination.more » « less
-
Within-species trait variation may be the result of genetic variation, environmental variation, or measurement error, for example. In phylogenetic comparative studies, failing to account for within-species variation has many adverse effects, such as increased error in testing hypotheses about evolutionary correlations, biased estimates of evolutionary rates, and inaccurate inference of the mode of evolution. These adverse effects were demonstrated in studies that considered a tree-like underlying phylogeny. Comparative methods on phylogenetic networks are still in their infancy. The impact of within-species variation on network-based methods has not been studied. Here, we introduce a phylogenetic linear model in which the phylogeny can be a network to account for within-species variation in the continuous response trait assuming equal within-species variances across species. We show how inference based on the individual values can be reduced to a problem using species-level summaries, even when the within-species variance is estimated. Our method performs well under various simulation settings and is robust when within-species variances are unequal across species. When phenotypic (within-species) correlations differ from evolutionary (between-species) correlations, estimates of evolutionary coefficients are pulled towards the phenotypic coefficients for all methods we tested. Also, evolutionary rates are either underestimated or overestimated, depending on the mismatch between phenotypic and evolutionary relationships. We applied our method to morphological and geographical data from Polemonium. We find a strong negative correlation of leaflet size with elevation, despite a positive correlation within species. Our method can explore the role of gene flow in trait evolution by comparing the fit of a network to that of a tree. We find marginal evidence for leaflet size being affected by gene flow and support for previous observations on the challenges of using individual continuous traits to infer inheritance weights at reticulations. Our method is freely available in the Julia package PhyloNetworks.more » « less
-
Hoffmann, Federico (Ed.)Abstract There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.more » « less
-
Phenotypic variation in diverse organism-level traits have been studied in Caenorhabditis elegans wild strains, but differences in gene expression and the underlying variation in regulatory mechanisms are largely unknown. Here, we use natural variation in gene expression to connect genetic variants to differences in organismal- level traits, including drug and toxicant responses. We performed transcriptomic analysis on 207 genetically distinct C. elegans wild strains to study natural regulatory variation of gene expression. Using this massive dataset, we performed genome-wide association mappings to investigate the genetic basis underlying gene expression variation and revealed complex genetic architectures. We found a large collection of hotspots enriched for expression quantitative trait loci across the genome. We further used mediation analysis to understand how gene expression variation could underlie organism-level phenotypic variation for a variety of complex traits. These results reveal the natural diversity in gene expression and possible regulatory mechanisms in this keystone model organism, highlighting the promise of gene expression variation in shaping phenotypic diversity.more » « less