skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inclusive Innovation: Reframing STEM Research in COVID-19
Undergraduate research has been found to be positively associated with obtaining a STEM baccalaureate degree, persisting in the field, and performing academically well. Underrepresented minority (UREP) students who participate in undergraduate research experiences show increased confidence in their abilities, understanding of the nature of research, and understanding of graduate school. In spring 2020, in direct response to the COVID-19 pandemic, institutions were forced to make shifts in program offerings. As a result of the move to online learning, research experiences were either canceled, postponed or moved to a virtual format. COVID-19 presented a new opportunity for students to still participate in activities from remote locations. After in-person activities resumed, aspects of these virtual opportunities have continued to be embraced by programs through virtual symposiums, more intentional and in depth “checking-in” at the start of meetings, wellness focused workshops, and emphasized community building. Additionally, virtual research experiences have expanded the number of students participating in these programs. The purpose of this paper is to share lessons learned from a co-curricular program for underrepresented students that successfully made the shift from in-person research experiences to virtual and back to in-person. Program activities are guided by the literature on mentoring, STEM identity, community, and sense of belonging. Implications for practitioners and faculty include opportunities for mentoring through virtual platforms, the inclusion of family, friends, and community members through virtual research symposiums, continuing to focus on the mental health and well-being of students, and the acknowledgement of varying home environments to conduct research.  more » « less
Award ID(s):
2308698
PAR ID:
10522154
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
New Orleans , Louisiana
Sponsoring Org:
National Science Foundation
More Like this
  1. Freitag, Nancy E. (Ed.)
    The National Summer Undergraduate Research Program (NSURP) is a mentored summer research program in biosciences for undergraduate students from underrepresented backgrounds in science, technology, engineering, and mathematics (STEM). Conducted virtually over 8 weeks every summer starting in 2020, NSURP provides accessible and flexible research experiences to meet the needs of geographically diverse and schedule-constrained students. Drawing from mentee reporting and surveys conducted within the NSURP framework involving over 350 underrepresented minority undergraduate students over three cohorts (2020–2022), matched with mentors, this paper highlights the potential benefits of students participating in virtual mentored research experiences. In addition to increased access to quality research experiences for students who face travel or academic setting constraints, we found that virtual mentoring fosters cross-cultural collaborations, generates novel research questions, and expands professional networks. Moreover, this study emphasizes the role of virtual mentorship opportunities in fostering inclusivity and support for individuals from underrepresented groups in STEM fields. By overcoming barriers to full participation in the scientific community, virtual mentorship programs can create a more equitable and inclusive environment for aspiring researchers. This research contributes to the growing body of literature on the effectiveness and the potential of virtual research programs and mentorship opportunities in broadening participation and breaking down barriers in STEM education and careers. IMPORTANCESummer Research Experiences for Undergraduates (REUs) are established to provide platforms for interest in scientific research and as tools for eventual matriculation to scientific graduate programs. Unfortunately, the COVID-19 pandemic forced the cancellation of in-person programs for 2020 and 2021, creating the need for alternative programming. The National Summer Undergraduate Research Project (NSURP) was created to provide a virtual option to REUs in microbiology to compensate for the pandemic-initiated loss of research opportunities. Although in-person REUs have since been restored, NSURP currently remains an option for those unable to travel to in-person programs in the first place due to familial, community, and/or monetary obligations. This study examines the effects of the program's first 3 years, documenting the students’ experiences, and suggests future directions and areas of study related to the impact of virtual research experiences on expanding and diversifying science, technology, engineering, and mathematics. 
    more » « less
  2. Abstract Research internships provide students with invaluable experience conducting independent research, contributing to larger research programs, and embedding in a professional scientific setting. These experiences increase student persistence in ecology and other science, technology, engineering, and mathematics (STEM) fields and promote the inclusion of students who lack opportunities at their home institutions and/or are from groups that are underrepresented in STEM. While many ecology internship programs were canceled during the 2020 COVID‐19 pandemic, others successfully adapted to offer virtual internships for the first time. Though different from what many researchers and students envision when they think of internships, virtual ecology internship programs can create more accessible opportunities and be just as valuable as in‐person opportunities when research programs and advisors develop virtual internships with intention and planning. Here, we highlight six ways to structure a virtual intern project, spanning a spectrum from purely computer‐based opportunities (e.g., digital data gathering, data analysis, or synthesis) to fully hands‐on research (e.g., sample processing or home‐based experiments). We illustrate examples of these virtual projects through a case study of the Smithsonian Environmental Research Center's 2020 Virtual Internship Program. Next, we provide 10 recommendations for effectively developing a virtual internship program. Finally, we end with ways that virtual internships can avoid the limitations of in‐person internships, as well as possible solutions to perceived pitfalls of virtual internships. While virtual internships became a necessity in 2020 due to COVID‐19, the development and continuation of virtual internships in future can be a valuable tool to add to the suite of existing internship opportunities, possibly further promoting diversity, equity, and inclusion in ecology and STEM. 
    more » « less
  3. The Remote Supergroup for Chemistry Undergraduates (RSCU) is a community of students and faculty from primarily undergraduate institutions that aims to (1) engage students in discussions of chemical research, (2) inform students of further educational and career pathways, (3) increase awareness and discourse of equity issues in science, and (4) foster scientific community across institutions. RSCU engaged participants in impactful virtual activities during the summer of 2020 when the COVID-19 pandemic precluded in-person undergraduate research experiences, and the program continued in 2021 as in-person research resumed. Results from self-reported surveys show that RSCU successfully achieved its aims both years, and both students and faculty research mentors benefited from participation. The diverse activities and scientific network cultivated by RSCU complement undergraduate research experiences and could be adapted to other disciplines. 
    more » « less
  4. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170). 
    more » « less
  5. Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170). 
    more » « less