The main energy end uses in commercial buildings include cooling, heating, and lighting. These energy consuming systems, however, can be substantially impacted by environmental parameters and sensor inputs when a building is being dynamically controlled. This study aims to conduct a sensitivity analysis on the energy consumption of a small commercial office building with an integrated control system, including automated shade devices and dimmable lighting. Previous studies have focused on sensitivity of automated shades energy impacts, based on glare level, solar irradiation, available daylighting and solar penetration; others have assessed the sensitivity of dimmable lighting on energy use. The focus of this study is to assess the impact of adjusting illuminance sensor location, and sensor rotation (towards or away from the exterior windows), for small office buildings with integrated shading and lighting controls in different ASHRAE climate zones. 
                        more » 
                        « less   
                    
                            
                            Comprehensive analysis of energy and visual performance of building-integrated photovoltaics in all ASHRAE climate zones
                        
                    
    
            Integrating PV panels into building facades (BIPV) necessitates a comprehensive understanding of the PV system’s impact on building energy consumption within the site’s climate zone. Maximizing PV power output depends on factors such as location, climate type, and latitude. However, minimizing total electricity consumption, which includes cooling, heating, and lighting loads, is significantly influenced by the design of the PV system and the climate region. This study conducted a thorough evaluation of the impact of south-facing PV-integrated louvers on both PV power generation and building energy performance, as well as occupants’ visual comfort, across 17 ASHRAE climate regions in the U.S. The results indicated that south-facing PV-integrated louvers significantly reduced building energy consumption in climate zones 1 to 3, as well as 4B and 5B. Wider louvers with longer spacing (S-3 typology) were particularly effective in zones with moderate cooling needs (climate zone 4). However, in colder climates (6–8) with significant heating demands, roof-mounted systems provided a better balance between power generation and solar heat gain for the building. The PV-louver designs effectively reduced sunlight penetration and maintained illuminance levels within the desired range across most of the floor area. Conversely, roof typologies exhibited lower lighting loads but resulted in significantly high mean illuminance levels on the working surface, leading to disturbing glare for occupants across a large portion of the floor area. The findings of this research offer practical implications for architects, engineers, and policymakers seeking sustainable building solutions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2122014
- PAR ID:
- 10522241
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Energy and buildings
- ISSN:
- 0378-7788
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract As a consequence of the warm and humid climate of tropical coastal regions, there is high energy demand year-round due to air conditioning to maintain indoor comfort levels. Past and current practices are focused on mitigating peak cooling demands by improving heat balances by using efficient building envelope technologies, passive systems, and demand side management strategies. In this study, we explore city-scale solar photovoltaic (PV) planning integrating information on climate, building parameters and energy models, and electrical system performance, with added benefits for the tropical coastal city of San Juan, Puerto Rico. Energy balance on normal roof, flush-mounted PV roof, and tilted PV roof are used to determine PV power generation, air, and roof surface temperatures. To scale up the application to the whole city, we use the urbanized version of the Weather Research and Forecast (WRF) model with the building effect parameterization (BEP) and the building energy model (BEM). The city topology is represented by the World Urban Database Access Portal Tool (WUDAPT), local climate zones (LCZs) for urban landscapes. The modeled peak roof temperature is maximum for normal roof conditions and minimum when inclined PV is installed on a roof. These trends are followed by the building air conditioning (AC) demand from urbanized WRF, maximum for normal roof and minimum for inclined roof-mounted PV. The net result is a reduced daytime Urban Heat Island (UHI) for horizontal and inclined PV roof and increased nighttime UHI for the horizontal PV roof as compared with the normal roof. The ratio between coincident AC demand and PV production for the entire metropolitan region is further analyzed reaching 20% for compact low rise and open low rise buildings due to adequate roof area but reaches almost 100% for compact high rise and compact midrise buildings class, respectively.more » « less
- 
            Buildings use 40% of the global energy consumption and emit 30% of CO2 emissions. Of the total building energy, 30-40% is for building heating and cooling systems, which regulate the indoor thermal environment and provide thermal comfort to occupants. Most buildings use forced air technology in the United States to deliver heating/cooling to the targeted thermal zones. Researchers have suggested using radiant heating and cooling systems as a better alternative to all-air systems. Radiant systems supply heating or cooling directly to the building space using radiation released by the heated or cooled building enclosure via the embedded heating or cooling tubes. It is unsure whether the radiant heating and cooling system can provide better thermal comfort to occupants. Moreover, the evaluation method for thermal comfort in the current standard is only suitable for forced air systems. A new plan shall be developed to evaluate the radiation system’s thermal comfort. This paper reviews the experiment-based studies on the thermal comfort of radiant systems. According to the experimental studies regarding thermal comfort and radiant systems, the key findings are concluded to help guide the evaluation of thermal comfort for radiant systems.more » « less
- 
            Windows are one of the main contributors to building energy consumption, and emerging dynamic window technologies offer improved performance. Specifically, NIRfocused window technologies are desirable in climates that consume both heating and cooling energy. However, the whole building energy effects of changeable NIR response of building windows have not been captured, largely due to the lack of an appropriate energy simulation method and NIR-focused window modeling. This study focuses on developing a simulation method that enables the comprehensive evaluation of the whole building energy effects of dynamic NIR modulations. Using an EnergyPlus EMS-based parametric framework, annual energy savings were estimated for a switchable between glass built-in system across three representative cities in ASHRAE climate zones 3, 4, and 5. This NIR-focused technology yielded energy savings of up to 19%. The results demonstrate the effects of NIR-focused window technologies on heating and cooling loads in different climates.more » « less
- 
            Buildings in the U.S. are responsible for approximately 40% of energy and 70% of the electricity consumption. To address rising greenhouse gas emissions and climate changes, various studies have explored strategies to reduce energy consumption in buildings. One opportunity to improve the building envelope performance is through improvements to fenestrations, particularly complex multi-layer fenestration systems for exterior windows. Windows are the least thermally efficient of all components in a typical building envelope. Windows also permit solar radiation into a building, which significantly increases the building energy consumption during the summer season. Meanwhile, windows are necessary to provide occupants with natural light, a view to the outside, and to support productivity. Thus, there is a need to strike a balance between energy savings, and the thermal and visual comfort impacted by windows. Traditionally, shading devices are one method used to adjust the amount of heat and light entering an interior space. However, such shading devices are typically operated manually by occupants, and are seldom used effectively over time. Currently the building energy simulation program EnergyPlus, has limited capabilities to model shading devices, and more limited abilities to model dynamic fenestrations. In this study, thus, we propose to model and validate several types of automated multi-layer fenestration elements, using co-simulation of EnergyPlus and Radiance using laboratory-collected data. EnergyPlus was used to model energy consumption and thermal comfort while Radiance was used to model lighting levels. BCVTB was used to interface between EnergyPlus and Radiance to facilitate co-simulation. To validate the models, experimental data was collected from 5 illuminance sensors in an exterior office space located in a test facility in Ankeny, IA. This model methodology can be used to improve the flexibility and modeling capabilities of dynamic fenestration elements for building energy performance evaluation methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    