skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2025

Title: Polymerization mechanism of the Candida albicans virulence factor candidalysin
Candida albicans is a commensal fungus that can cause epithelial infections and life-threatening invasive candidiasis. The fungus secretes candidalysin (CL), a peptide that causes cell damage and immune activation by permeation of epithelial membranes. The mechanism of CL action involves strong peptide assembly into polymers in solution. The free ends of linear CL polymers can join, forming loops that become pores upon binding to membranes. CL polymers constitute a therapeutic target for candidiasis, but little is known about CL self-assembly in solution. Here, we examine the assembly mechanism of CL in the absence of membranes using complementary biophysical tools, including a new fluorescence polymerization assay, mass photometry, and atomic force microscopy. We observed that CL assembly is slow, as tracked with the fluorescent marker C-laurdan. Single-molecule methods showed that CL polymerization involves a convolution of four processes. Self-assembly begins with the formation of a basic subunit, thought to be a CL octamer that is the polymer seed. Polymerization proceeds via the addition of octamers, and as polymers grow they can curve and form loops. Alternatively, secondary polymerization can occur and cause branching. Interplay between the different rates determines the distribution of CL particle types, indicating a kinetic control mechanism. This work elucidates key physical attributes underlying CL self-assembly which may eventually evoke pharmaceutical development.  more » « less
Award ID(s):
2122027
PAR ID:
10522329
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology
Date Published:
Journal Name:
Journal of Biological Chemistry
Volume:
300
Issue:
6
ISSN:
0021-9258
Page Range / eLocation ID:
107370
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fungus Candida albicans is the most common cause of yeast infections in humans. Like many other disease-causing microbes, it releases several virulent proteins that invade and damage human cells. This includes the peptide candidalysin which has been shown to be crucial for infection. Human cells are surrounded by a protective membrane that separates their interior from their external environment. Previous work showed that candidalysin damages the cell membrane to promote infection. However, how candidalysin does this remained unclear. Similar peptides and proteins cause harm by inserting themselves into the membrane and then grouping together to form a ring. This creates a hole, or ‘pore’, that weakens the membrane and allows other molecules into the cell’s interior. Here, Russell, Schaefer et al. show that candidalysin uses a unique pore forming mechanism to impair the membrane of human cells. A combination of biophysical and cell biology techniques revealed that the peptide groups together to form a chain. This chain of candidalysin proteins then closes in on itself to create a loop structure that can insert into the membrane to form a pore. Once embedded within the membrane, the proteins within the loops rearrange again to make the pores more stable so they can cause greater damage. This type of pore formation has not been observed before, and may open up new avenues of research. For instance, researchers could use this information to develop inhibitors that stop candidalysin from forming chains and harming the membranes of cells. This could help treat the infections caused by C. albicans. 
    more » « less
  2. null (Ed.)
    Supramolecular assembly and PEGylation (attachment of a polyethylene glycol polymer chain) of peptides can be an effective strategy to develop antimicrobial peptides with increased stability, antimicrobial efficacy and hemocompatibility. However, how the self-assembly properties and PEGylation affect their lipid membrane interaction is still an unanswered question. In this work, we use state-of-the-art small angle X-ray and neutron scattering (SAXS/SANS) together with neutron reflectometry (NR) to study the membrane interaction of a series of multidomain peptides, with and without PEGylation, known to self-assemble into nanofibers. Our approach allows us to study both how the structure of the peptide and the membrane are affected by the peptide–lipid interactions. When comparing self-assembled peptides with monomeric peptides that are not able to undergo assembly due to shorter chain length, we found that the nanofibers interact more strongly with the membrane. They were found to insert into the core of the membrane as well as to absorb as intact fibres on the surface. Based on the presented results, PEGylation of the multidomain peptides leads to a slight net decrease in the membrane interaction, while the distribution of the peptide at the interface is similar to the non-PEGylated peptides. Based on the structural information, we showed that nanofibers were partially disrupted upon interaction with phospholipid membranes. This is in contrast with the considerable physical stability of the peptide in solution, which is desirable for an extended in vivo circulation time. 
    more » « less
  3. null (Ed.)
    Self-assembly of proteins on lipid membranes underlies many important processes in cell biology, such as, exo- and endo-cytosis, assembly of viruses, etc. An attractive force that can cause self-assembly is mediated by membrane thickness interactions between proteins. The free energy profile associated with this attractive force is a result of the overlap of thickness deformation fields around the proteins which can be calculated from the solution of a boundary value problem. Yet, the time scales over which two inclusions coalesce has not been explored, even though the evolution of particle concentrations on membranes has been modeled using phase-field approaches. In this paper we compute this time scale as a function of the initial distance between two inclusions by viewing their coalescence as a first passage time problem. The mean first passage time is computed using Langevin dynamics and a partial differential equation, and both methods are found to be in excellent agreement. Inclusions of three different shapes are studied and it is found that for two inclusions separated by about hundred nanometers the time to coalescence is hundreds of milliseconds irrespective of shape. An efficient computation of the interaction energy of inclusions is central to our work. We compute it using a finite difference technique and show that our results are in excellent agreement with those from a previously proposed semi-analytical method based on Fourier–Bessel series. The computational strategies described in this paper could potentially lead to efficient methods to explore the kinetics of self-assembly of proteins on lipid membranes. 
    more » « less
  4. Abstract Peptide–polymer amphiphiles (PPAs) are tunable hybrid materials that achieve complex assembly landscapes by combining the sequence‐dependent properties of peptides with the structural diversity of polymers. Despite their promise as biomimetic materials, determining how polymer and peptide properties simultaneously affect PPA self‐assembly remains challenging. We herein present a systematic study of PPA structure–assembly relationships. PPAs containing oligo(ethyl acrylate) and random‐coil peptides were used to determine the role of oligomer molecular weight, dispersity, peptide length, and charge density on self‐assembly. We observed that PPAs predominantly formed spheres rather than anisotropic particles. Oligomer molecular weight and peptide hydrophilicity dictated morphology, while dispersity and peptide charge affected particle size. These key benchmarks will facilitate the rational design of PPAs that expand the scope of biomimetic functionality within assembled soft materials. 
    more » « less
  5. Efficient transfer of halogen atoms is essential for controlling the growth of polymers in atom transfer radical polymerization (ATRP). The nature of halogens may influence the efficiency of the halogen atom transfer during the activation and deactivation processes. The effect of halogens can be associated with the C–X bond dissociation energy and the affinity of the halogens/halides to the transition metal catalyst. In this paper, we study the effect of halogens (Br vs. Cl) and reaction media in iron-catalyzed ATRP in the presence of halide anions as ligands. In Br-based initiating systems, polymerization of methacrylate monomers was well-controlled whereas Cl-based initiating systems provided limited control over the polymerization. The high affinity of the Cl atom to the iron catalyst renders it less efficient for fast deactivation of growing chains, resulting in polymers with molecular weights higher than predetermined by Δ[M]/[RX] o and with high dispersities. Conversely, Br can be exchanged with higher efficiency and hence provided good control over polymerization. Decreasing the polarity of the reaction medium improved the polymerization control. Polymerizations using ppm levels of the iron catalyst in acetonitrile (a more polar solvent) yielded polymers with larger dispersity values due to the slow rate of deactivation as opposed to the less polar solvent anisole, which afforded well-controlled polymers with dispersity <1.2. 
    more » « less