Abstract STEAM education is an educational approach of interdisciplinary teaching of science, technology, engineering, art, and mathematics. STEAM education, however, is often viewed as only including art elements into STEM teaching. Without true integration of the disciplines in STEAM curricula, students rarely are exposed to the connection among disciplines, and self-identify as solely scientists, artists, or technophiles. STEAM curricula also infrequently integrate design, which promotes creativity and innovation. Effective STEAM curriculum and practices are needed to prepare students to face 21st century challenges and work demands. We designed a high school STEAM educational module that integrated plant science, design, and emergent technologies through the creation of 3D models of plants and augmented and virtual reality (AVR) experiences and investigated its impact on students’ understanding of the intersection of art and design with science, learning and skills gains, and interests in STEAM subjects and careers. The module used a project-based learning approach that relied on student teamwork and facilitation by educators. In this 3D plant modeling module, students: (1) investigated plants under research at a plant science research center, (2) designed and created 3D models of those plants, (3) learned about the application of 3D modeling in AVR platforms, and (4) disseminated project results. We used qualitative and quantitative research methods both before and after the implementation of the model to assess the impact of the 3D modeling module. Student responses revealed that approximately half of the students had a good understanding of the intersection of art and design with science prior to the implementation of the module, while the other half gained this understanding after completing their projects. Students saw art and design playing a role in science mainly by facilitating communication and further understanding and fostering new ideas. They also reported that science influenced art and design through the artistic creation process. The most common learning gains were in plant science and 3D modeling, with 35% and 20% of the students reporting these themes only after completing their projects, respectively. The skill gains most cited were research, teamwork, and communication skills. Over 25% of the students reported these skill gains only after the completion of their projects. Paired comparisons of survey responses indicated a significant increase in students’ interest in science, mathematics, and design subjects after they completed their projects. At the end of the module, 40% of the students were more interested in STEAM careers. Another 13% of the students indicated they already had an interest in STEAM careers before beginning the module. Our findings indicate that our STEAM module effectively integrated science, art, design, and technology, enhancing student literacy in these fields, and providing students with essential 21st century skills. The module led to interdisciplinary learning and development of interest in STEAM subjects and careers. The combination of pedagogical strategies used in our module for active, collaborative, authentic, and meaningful learning exemplifies an effective STEAM curriculum with valuable instructional tools for educators, inspiring new ways of teaching and learning, contributing to the practice and applications in STEAM education.
more »
« less
Deploying Emerging Technologies to Revolutionize STEAM+Ag Education
As technology rapidly advances, bridging the gap between traditional learning methods and emergent technologies has become imperative to inspire the next generation of STEAM+Ag® scientists. The Education Research and Outreach Laboratory (EROL) at the Donald Danforth Plant Science Center has embarked on a groundbreaking journey with its Education Technology Program (ETP), revolutionizing STEAM+Ag education through immersive experiences and emergent technologies.
more »
« less
- Award ID(s):
- 1949463
- PAR ID:
- 10522341
- Publisher / Repository:
- Donald Danforth Plant Science Center
- Date Published:
- Subject(s) / Keyword(s):
- Education technology STEAM+Ag
- Format(s):
- Medium: X
- Institution:
- Donald Danforth Plant Science Center
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Developing STEAM (Science, Technology, Engineering, Art, and Math) education curricula encouraging participation from underrepresented groups is crucial for diversity in computational fields. Many existing programs attract cis-white males, to the exclusion of other groups. This paper discusses a camp where participants, primarily female youth ages 10-14 (N=45), engage in crafting social wearable technologies within a live-action roleplay context. Our findings from four camp sessions show increased self-reported competence and interest in STEAM among participants, alongside enhanced feelings of community and social support. The camp’s innovative approach integrates design thinking, iterative design, and collaboration, proving effective in fostering inclusivity and engagement in STEAM. We adopted an iterative Research-through-Design process, with researchers embedded in the camp to observe and conduct surveys and interviews with participants. Researchers and educators can benefit from reading our results, which demonstrate the value of a playful, socially-engaged curriculum in attracting and retaining diverse students in STEAM fields.more » « less
-
Goal: address the disconnect between science, design, and technology at the high school level. Objectives: 1. integrate art/design into STEM education (STEAM), 2. foster plant science knowledge, 3. apply augmented and virtual reality (AVR) technologies, and 4. inspire interest in and provide skills for future STEAM careers. Collaborative teams of self-identified science, technophile, and art students receive training in 3D modeling. With support from scientists, the students create models of research plants, practice science communication skills during public/scientific events, and make connections to real-life situations using AVR devices. We use a mixed-methods assessment approach. Results from the first year of this project indicate that students are more aware of the role of art/design in science and vice versa. Students acknowledge the benefits of productive failure when facing challenges creating 3D models and are more interested in STEAM career paths.more » « less
-
The integration of STEM with the Arts, commonly referred to as STEAM, recognizes the need for human skill, creativity, and imagination in technological innovations and solutions of real-world technical problems. The STEAM paradigm changes the dominant “chalk and talk” lecture and “closed-ended” problem-solving orientation of traditional engineering pedagogy to a hands-on, studio-based, and open-ended creative learning approach, typical in art education. A growing body of literature has provided evidence of the favorable impact of situating STEAM in K-16 education. The long-term objective of this work is to promote creativity in engineering students by integrating learning methods and environments from the Arts into graduate STEM education. To this end, an integrating engineering, technology and art (ETA) educational model is developed and is currently being tested. This ETA educational model systematically merges technical instruction with studio-based pedagogy. The ETA model consists of three courses, which were piloted in the year 2017. In each course, engineering and art instructors and students collaborated for 15 weeks on design projects. These projects ranged from drones to architectural installations.more » « less
-
The environment, science, technology, engineering, arts, and mathematics fields (a collection of fields we call E-STEAM) continue to grow and remain economically and ecologically important. However, historically excluded groups remain underrepresented in science and technology professions, particularly in environmental and digital media fields. Consequently, building pathways for historically excluded students to enter economically viable and ecologically influential E-STEAM professions is critically important. These new pathways hold promise for increasing innovation within these fields and ensuring a multiplicity of representation as these fields are shaped and reshaped to attend to the plural interests of diverse communities. Consequently, this conceptual paper describes an eco-digital storytelling (EDS) approach to engaging historically excluded populations in science, technology, engineering, and mathematics (STEM). This approach offers structured learning opportunities connected to learner interests and community needs with the aim of increasing E-STEAM identity and career interest of teens from groups historically excluded from E-STEAM fields. E-STEAM identity is a meaning one can attach to oneself or that can be ascribed externally by others as individuals interact and engage in E-STEAM fields in ways that foreground the environment. The EDS approach leverages community-based action, technology and digital media, and arts and storytelling as entry points for engaging learners. EDS is designed to increase teens’ content knowledge within multiple E-STEAM fields and to provide numerous technology-rich experiences in both application of geospatial technologies (i.e., GPS, interactive maps) and digital media creation (i.e., video, animation, ArcGIS StoryMaps) as a way to shape teens’ cultural learning pathways. Examples of rich digital media presentations developed to communicate the EDS approach and local environmental opportunities, challenges, and projects are provided that exemplify how both participation in and communication of environmental action can contribute to more promising and sustainable futures.more » « less
An official website of the United States government

