skip to main content


Title: DA3: Dynamic Additive Attention Adaption for Memory-Efficient On-Device Multi-Domain Learning
Nowadays, one practical limitation of deep neural network (DNN) is its high degree of specialization to a single task or domain (e.g., one visual domain). It motivates researchers to develop algorithms that can adapt DNN model to multiple domains sequentially, while still performing well on the past domains, which is known as multi-domain learning. Almost all conventional methods only focus on improving accuracy with minimal parameter update, while ignoring high computing and memory cost during training, which makes it difficult to deploy multi-domain learning into more and more widely used resource-limited edge devices, like mobile phone, IoT, embedded system, etc. During our study in multi-domain training process, we observe that large memory used for activation storage is the bottleneck that largely limits the training time and cost on edge devices. To reduce training memory usage, while keeping the domain adaption accuracy performance, we propose Dynamic Additive Attention Adaption (DA3), a novel memory-efficient on-device multi-domain learning method. DA3 learns a novel additive attention adaptor module, while freezing the weights of the pre-trained backbone model for each domain. Differentiating from prior works, such module not only mitigates activation memory buffering for reducing memory usage during training, but also serves as a dynamic gating mechanism to reduce the computation cost for fast inference. We validate DA3 on multiple datasets against state-of-the-art methods, which shows great improvement in both accuracy and training time. Moreover, we deployed DA3 into the popular NIVDIA Jetson Nano edge GPU, where the measured experimental results show our proposed \mldam reduces the on-device training memory consumption by 19x-37x, and training time by 2x, in comparison to the baseline methods (e.g., standard fine-tuning, Parallel and Series Res. adaptor, and Piggyback).  more » « less
Award ID(s):
1931871 2144751
NSF-PAR ID:
10348284
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Page Range / eLocation ID:
2619-2627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transfer learning on edge is challenging due to on-device limited resources. Existing work addresses this issue by training a subset of parameters or adding model patches. Developed with inference in mind, Inverted Residual Blocks (IRBs) split a convolutional layer into depthwise and pointwise convolutions, leading to more stacking layers, e.g., convolution, normalization, and activation layers. Though they are efficient for inference, IRBs require that additional activation maps are stored in memory for training weights for convolution layers and scales for normalization layers. As a result, their high memory cost prohibits training IRBs on resource-limited edge devices, and making them unsuitable in the context of transfer learning. To address this issue, we present MobileTL, a memory and computationally efficient on-device transfer learning method for models built with IRBs. MobileTL trains the shifts for internal normalization layers to avoid storing activation maps for the backward pass. Also, MobileTL approximates the backward computation of the activation layer (e.g., Hard-Swish and ReLU6) as a signed function which enables storing a binary mask instead of activation maps for the backward pass. MobileTL fine-tunes a few top blocks (close to output) rather than propagating the gradient through the whole network to reduce the computation cost. Our method reduces memory usage by 46% and 53% for MobileNetV2 and V3 IRBs, respectively. For MobileNetV3, we observe a 36% reduction in floating-point operations (FLOPs) when fine-tuning 5 blocks, while only incurring a 0.6% accuracy reduction on CIFAR10. Extensive experiments on multiple datasets demonstrate that our method is Pareto-optimal (best accuracy under given hardware constraints) compared to prior work in transfer learning for edge devices. 
    more » « less
  2. Conventionally, DNN models are trained once in the cloud and deployed in edge devices such as cars, robots, or unmanned aerial vehicles (UAVs) for real-time inference. However, there are many cases that require the models to adapt to new environments, domains, or users. In order to realize such domain adaption or personalization, the models on devices need to be continuously trained on the device. In this work, we design EF-Train, an efficient DNN training accelerator with a unified channel-level parallelism-based convolution kernel that can achieve end-to-end training on resource-limited low-power edge-level FPGAs. It is challenging to implement on-device training on resource-limited FPGAs due to the low efficiency caused by different memory access patterns among forward and backward propagation and weight update. Therefore, we developed a data reshaping approach with intra-tile continuous memory allocation and weight reuse. An analytical model is established to automatically schedule computation and memory resources to achieve high energy efficiency on edge FPGAs. The experimental results show that our design achieves 46.99 GFLOPS and 6.09 GFLOPS/W in terms of throughput and energy efficiency, respectively. 
    more » « less
  3. Deep Neural Networks (DNN) could forget the knowledge about earlier tasks when learning new tasks, and this is known as catastrophic forgetting. To learn new task without forgetting, recently, the mask-based learning method (e.g. piggyback ) is proposed to address these issues by learning only a binary element-wise mask, while keeping the backbone model fixed. However, the binary mask has limited modeling capacity for new tasks. A more recent work proposes a compress-grow-based method (CPG) to achieve better accuracy for new tasks by partially training backbone model, but with order-higher training cost, which makes it infeasible to be deployed into popular state-of-the-art edge-/mobile-learning. The primary goal of this work is to simultaneously achieve fast and high-accuracy multi-task adaption in a continual learning setting. Thus motivated, we propose a new training method called Kernel-wise Soft Mask (KSM), which learns a kernel-wise hybrid binary and real-value soft mask for each task. Such a soft mask can be viewed as a superposition of a binary mask and a properly scaled real-value tensor, which offers a richer representation capability without low-level kernel support to meet the objective of low hardware overhead. We validate KSM on multiple benchmark datasets against recent state-of-the-art methods (e.g. Piggyback, Packnet, CPG, etc.), which shows good improvement in both accuracy and training cost. 
    more » « less
  4. Federated learning (FL) has attracted increasing attention as a promising technique to drive a vast number of edge devices with artificial intelligence. However, it is very challenging to guarantee the efficiency of a FL system in practice due to the heterogeneous computation resources on different devices. To improve the efficiency of FL systems in the real world, asynchronous FL (AFL) and semi-asynchronous FL (SAFL) methods are proposed such that the server does not need to wait for stragglers. However, existing AFL and SAFL systems suffer from poor accuracy and low efficiency in realistic settings where the data is non-IID distributed across devices and the on-device resources are extremely heterogeneous. In this work, we propose FedSEA - a semi-asynchronous FL framework for extremely heterogeneous devices. We theoretically disclose that the unbalanced aggregation frequency is a root cause of accuracy drop in SAFL. Based on this analysis, we design a training configuration scheduler to balance the aggregation frequency of devices such that the accuracy can be improved. To improve the efficiency of the system in realistic settings where the devices have dynamic on-device resource availability, we design a scheduler that can efficiently predict the arriving time of local updates from devices and adjust the synchronization time point according to the devices' predicted arriving time. We also consider the extremely heterogeneous settings where there exist extremely lagging devices that take hundreds of times as long as the training time of the other devices. In the real world, there might be even some extreme stragglers which are not capable of training the global model. To enable these devices to join in training without impairing the systematic efficiency, Fed-SEA enables these extreme stragglers to conduct local training on much smaller models. Our experiments show that compared with status quo approaches, FedSEA improves the inference accuracy by 44.34% and reduces the systematic time cost and local training time cost by 87.02× and 792.9×. FedSEA also reduces the energy consumption of the devices with extremely limited resources by 752.9×. 
    more » « less
  5. null (Ed.)
    To deploy powerful deep neural network (DNN) into smart, but resource limited IoT devices, many prior works have been proposed to compress DNN to reduce the network size and computation complexity with negligible accuracy degradation, such as weight quantization, network pruning, convolution decomposition, etc. However, by utilizing conventional DNN compression methods, a smaller, but fixed, network is generated from a relative large background model to achieve resource limited hardware acceleration. However, such optimization lacks the ability to adjust its structure in real-time to adapt for a dynamic computing hardware resource allocation and workloads. In this paper, we mainly review our two prior works [13], [15] to tackle this challenge, discussing how to construct a dynamic DNN by means of either uniform or non-uniform sub-nets generation methods. Moreover, to generate multiple non-uniform sub-nets, [15] needs to fully retrain the background model for each sub-net individually, named as multi-path method. To reduce the training cost, in this work, we further propose a single-path sub-nets generation method that can sample multiple sub-nets in different epochs within one training round. The constructed dynamic DNN, consisting of multiple sub-nets, provides the ability to run-time trade-off the inference accuracy and latency according to hardware resources and environment requirements. In the end, we study the the dynamic DNNs with different sub-nets generation methods on both CIFAR-10 and ImageNet dataset. We also present the run-time tuning of accuracy and latency on both GPU and CPU. 
    more » « less