skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploiting Data Locality to Improve Performance of Heterogeneous Server Clusters
We consider load balancing in large-scale heterogeneous server systems in the presence of data locality that imposes constraints on which tasks can be assigned to which servers. The constraints are naturally captured by a bipartite graph between the servers and the dispatchers handling assignments of various arrival flows. When a task arrives, the corresponding dispatcher assigns it to a server with the shortest queue among [Formula: see text] randomly selected servers obeying these constraints. Server processing speeds are heterogeneous, and they depend on the server type. For a broad class of bipartite graphs, we characterize the limit of the appropriately scaled occupancy process, both on the process level and in steady state, as the system size becomes large. Using such a characterization, we show that imposing data locality constraints can significantly improve the performance of heterogeneous systems. This is in stark contrast to either heterogeneous servers in a full flexible system or data locality constraints in systems with homogeneous servers, both of which have been observed to degrade the system performance. Extensive numerical experiments corroborate the theoretical results. Funding: This work was partially supported by the National Science Foundation [CCF. 07/2021–06/2024].  more » « less
Award ID(s):
2113027
PAR ID:
10522392
Author(s) / Creator(s):
; ;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
Stochastic Systems
ISSN:
1946-5238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Applications in cloud platforms motivate the study of efficient load balancing under job-server constraints and server heterogeneity. In this paper, we study load balancing on a bipartite graph where left nodes correspond to job types and right nodes correspond to servers, with each edge indicating that a job type can be served by a server. Thus edges represent locality constraints, i.e., an arbitrary job can only be served at servers which contain certain data and/or machine learning (ML) models. Servers in this system can have heterogeneous service rates. In this setting, we investigate the performance of two policies named Join-the-Fastest-of-the-Shortest-Queue (JFSQ) and Join-the-Fastest-of-the-Idle-Queue (JFIQ), which are simple variants of Join-the-Shortest-Queue and Join-the-Idle-Queue, where ties are broken in favor of the fastest servers. Under a "well-connected'' graph condition, we show that JFSQ and JFIQ are asymptotically optimal in the mean response time when the number of servers goes to infinity. In addition to asymptotic optimality, we also obtain upper bounds on the mean response time for finite-size systems. We further show that the well-connectedness condition can be satisfied by a random bipartite graph construction with relatively sparse connectivity. 
    more » « less
  2. Consider a system with N identical single-server queues and a number of task types, where each server is able to process only a small subset of possible task types. Arriving tasks select [Formula: see text] random compatible servers and join the shortest queue among them. The compatibility constraints are captured by a fixed bipartite graph between the servers and the task types. When the graph is complete bipartite, the mean-field approximation is accurate. However, such dense compatibility graphs are infeasible for large-scale implementation. We characterize a class of sparse compatibility graphs for which the mean-field approximation remains valid. For this, we introduce a novel notion, called proportional sparsity, and establish that systems with proportionally sparse compatibility graphs asymptotically match the performance of a fully flexible system. Furthermore, we show that proportionally sparse random compatibility graphs can be constructed, which reduce the server degree almost by a factor [Formula: see text] compared with the complete bipartite compatibility graph. 
    more » « less
  3. We consider a large-scale parallel-server loss system with an unknown arrival rate, where each server is able to adjust its processing speed. The objective is to minimize the system cost, which consists of a power cost to maintain the servers' processing speeds and a quality of service cost depending on the tasks' processing times, among others. We draw on ideas from stochastic approximation to design a novel speed scaling algorithm and prove that the servers' processing speeds converge to the globally asymptotically optimum value. Curiously, the algorithm is fully distributed and does not require any communication between servers. Apart from the algorithm design, a key contribution of our approach lies in demonstrating how concepts from the stochastic approximation literature can be leveraged to effectively tackle learning problems in large-scale, distributed systems. En route, we also analyze the performance of a fully heterogeneous parallel-server loss system, where each server has a distinct processing speed, which might be of independent interest. 
    more » « less
  4. Gibbons, P; Pekhimenko, G; De_Sa, C (Ed.)
    Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They also may be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual, heavyweight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce the locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism, while minimizing aggregation time and resource consumption. Our preliminary experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems. 
    more » « less
  5. Federated Learning (FL) typically involves a large-scale, distributed system with individual user devices/servers training models locally and then aggregating their model updates on a trusted central server. Existing systems for FL often use an always-on server for model aggregation, which can be inefficient in terms of resource utilization. They also may be inelastic in their resource management. This is particularly exacerbated when aggregating model updates at scale in a highly dynamic environment with varying numbers of heterogeneous user devices/servers. We present LIFL, a lightweight and elastic serverless cloud platform with fine-grained resource management for efficient FL aggregation at scale. LIFL is enhanced by a streamlined, event-driven serverless design that eliminates the individual, heavyweight message broker and replaces inefficient container-based sidecars with lightweight eBPF-based proxies. We leverage shared memory processing to achieve high-performance communication for hierarchical aggregation, which is commonly adopted to speed up FL aggregation at scale. We further introduce the locality-aware placement in LIFL to maximize the benefits of shared memory processing. LIFL precisely scales and carefully reuses the resources for hierarchical aggregation to achieve the highest degree of parallelism, while minimizing aggregation time and resource consumption. Our preliminary experimental results show that LIFL achieves significant improvement in resource efficiency and aggregation speed for supporting FL at scale, compared to existing serverful and serverless FL systems. 
    more » « less