skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reversible Photochromism of 4,4’‐Disubstituted 2,2’‐Bipyridine in the Presence of SO 3
Abstract We report an unusual photochromic behavior of 4,4′‐disubstituted‐2,2′‐bipyridine. It was found that in the presence of a SO3source and HCl, 2,2′‐bipyridine‐4,4′‐dibutyl ester undergoes a color change from yellow to magenta in solution with maximum absorbance at 545 nm upon irradiation with 395 nm light. The photochromism is thermally reversible in solution. Different from the known bipyridine‐based photoswitching pathways, the photo response does not involve any metal which form colored complexes or the formation of colored free radical cations like the photo‐reduction of viologens. A combination of experimental and computational analysis was used to probe the mechanism. The results suggest the colored species to be a complex formed between N‐oxide of the 2,2′‐bipyridine‐4,4′‐dibutyl ester and SO2; the N‐oxide and SO2are formed from photoactivated oxidation of the bipyridine with SO3serving as the oxygen source. This complex represents a new addition to the library of photoswitches that is easy to synthesize, reversible in solution, and of high fatigue resistance, making it a promising candidate for applications in photo‐switchable materials and SO3detection. We also demonstrated experimentally similar photochromic behaviors with 2,2’‐bipyridine‐containing polymers.  more » « less
Award ID(s):
2238935
PAR ID:
10522522
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
25
Issue:
17
ISSN:
1439-4235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We report the hydrothermal syntheses and crystal structures of aquabis(2,2′-bipyridine-κ 2 N , N ′)copper(II) hexafluoridosilicate tetrahydrate, [Cu(bpy) 2 (H 2 O)][SiF 6 ]·4H 2 O (bpy is 2,2′-bipyridine, C 10 H 8 N 2 ), (I), bis(2,2′-bipyridine-3κ 2 N , N ′)-di-μ-fluorido-1:3κ 2 F : F ;2:3κ 2 F : F -decafluorido-1κ 5 F ,2κ 5 F -ditantalum(V)copper(II), [Cu(bpy) 2 (TaF 6 ) 2 ], (II), tris(2,2′-bipyridine-κ 2 N , N ′)copper(II) bis[hexafluoridotantalate(V)], [Cu(bpy) 3 ][TaF 6 ] 2 , (III), and catena -poly[[diaqua(2,2′-bipyridine-κ 2 N , N ′)copper(II)]-μ-fluorido-tetrafluoridotin-μ-fluorido], [Cu(bpy)(H 2 O) 2 SnF 6 ] n , (IV). Compounds (I), (II) and (III) contain locally chiral copper coordination complexes with C 2 , D 2 , and D 3 symmetry, respectively. The extended structures of (I) and (IV) are consolidated by O—H...F and O—H...O hydrogen bonds. The structure of (III) was found to be a merohedral (racemic) twin. 
    more » « less
  2. Ruthenium polypyridyl complexes have gained significant interest as photochemotherapies (PCTs) where their excited-state properties play a critical role in the photo-cytotoxicity mechanism and efficacy. Herein we report a systematic electrochemical, spectrochemical, and photophysical analysis of a series of ruthenium( ii ) polypyridyl complexes of the type [Ru(bpy) 2 (N–N)] 2+ (where bpy = 2,2′-bipyridine; N–N is a bidentate polypyridyl ligand) designed to mimic PCTs. In this series, the N–N ligand was modified through increased conjugation and/or incorporation of electronegative heteroatoms to shift the metal-to-ligand charge-transfer (MLCT) absorptions near the therapeutic window for PCTs (600–1100 nm) while incorporating steric bulk to trigger photoinduced ligand dissociation. The lowest energy MLCT absorptions were red-shifted from λ max = 454 nm to 564 nm, with emission energies decreasing from λ max = 620 nm to 850 nm. Photoinduced ligand ejection and temperature-dependent emission studies revealed an important interplay between red-shifting MLCT absorptions and accessing the dissociative 3 dd* states, with energy barriers between the 3 MLCT* and 3 dd* states ranging from 850 cm −1 to 2580 cm −1 for the complexes measured. This work demonstrates the importance of understanding both the MLCT manifold and 3 dd* state energy levels in the future design of ligands and complexes for PCT. 
    more » « less
  3. Abstract Ru(II) complexes were synthesized with π‐expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen‐1‐yl, naphthalene‐2‐yl, anthryl and pyrenyl groups) attached at a 1H‐imidazo[4,5‐f][1,10]phenanthroline ligand and 4,4′‐dimethyl‐2,2′‐bipyridine (4,4′‐dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK‐MEL‐28 cells. In the SK‐MEL‐28 cells, the Ru(II) complexes are highly phototoxic (EC50 = 0.2–0.5 µm) and have low dark toxicity (EC50 = 58–230 µm). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2‐(pyren‐1‐yl)‐1H‐imidazo[4,5‐f][1,10]phenanthroline ligand. This high PI is in part attributed to the π‐rich character added by the pyrenyl group, and a possible low‐lying and longer‐lived3IL state due to equilibration with the3MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ = 0.84), contributions from type‐I processes (oxygen radicals and radical ions) are competitive with the type‐II (1O2) process based on effects of added sodium azide and solvent deuteration. 
    more » « less
  4. In this paper, the complex dielectric function of 2,5-bis(N,N-dibutyl-4-aminophenyl) thiazolo[5,4-d]thiazole is reported. Thin films of this material were obtained by spin coating on a silicon substrate. The samples were investigated using spectroscopic ellipsometry in the spectral range from 354 nm to 1907 nm at multiple angles of incidence. The ellipsometric data were analyzed using a stratified-layer model composed of a thiazolothiazole thin film, a native SiO2oxide, and a Si substrate. The model dielectric function of the thiazolothiazole thin film was modeled using a series of Tauc-Lorentz and Gaussian oscillators. The best-model calculated data reproduces the experimental data very well. The bandgap of TTz is reported and found to be in good agreement with density functional theory calculations reported earlier. 
    more » « less
  5. Abstract An iron complex, tris(4,4′‐bis(hydroxymethyl)‐2,2′‐bipyridine) iron dichloride is reported, which operates at near‐neutral pH with a redox potential of 0.985 V versus SHE. This high potential compound is employed in the posolyte of an aqueous flow battery, paired with bis(3‐trimethylammonio)propyl viologen tetrachloride in the negolyte, exhibiting an open‐circuit voltage of 1.3 V at near‐neutral pH. It demonstrates excellent cycling performance with a low temporal capacity fade rate of 0.07% per day over 35 days of cycling. The extended cycling lifetime is the result of low permeability and improved structural stability of the newly developed iron complex compared to that of the iron tris(bipyridine) complex. The combination of high redox potential and low capacity fade rate compares favorably with those of all previously demonstrated organic and organometallic aqueous posolytes. Extensive investigation into the possible degradation mechanisms, including post‐mortem chemical and electrochemical analyses, indicates that stepwise ligand dissociations of the iron complex are responsible for the reported capacity loss during cell cycling. This investigation provides unprecedented insight to guide further improvements of such metalorganic compounds for energy storage and conversion applications. 
    more » « less