Nitrogen-doped, 3-dimensional graphene (N3DG), synthesized as a one-step thermal CVD process, was further functionalized with atmospheric pressure oxygen plasma. Electrodes were fabricated and tested based on the functionalized N3DG. Their characterization included scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Brunauer–Emmet–Teller (BET), and electrochemical measurements. The tested electrodes revealed a 208% increase in the specific capacitance compared to pristine 3D graphene electrodes in a three-electrode configuration. The performed doping and plasma treatment enabled an increase in the electrode‘s surface area by 4 times compared to pristine samples. Furthermore, the XPS results revealed the presence of nitrogen and oxygen functional groups in the doped and functionalized material. Symmetric supercapacitors assembled from the functionalized 3D graphene using aqueous and organic electrolytes were compared for electrochemical performance. The device with ionic electrolyte EMIMB4 electrolyte exhibited a superior energy density of 54 Wh/kg and power density of 1224 W/kg. It also demonstrated a high-cyclic stability of 15,000 cycles with a capacitance retention of 107%.
more »
« less
Suppression of Impedimetric Baseline Drift for Stable Biosensing
Biosensors based on Electrochemical Impedance Spectroscopy (EIS) detect the binding of an analyte to a receptor functionalized electrode by measuring the subsequent change in the extracted charge-transfer resistance (RCT). In this work, the stability of a long chain alkanethiol, 16-mercaptohexadecanoic acid was compared to that of a polymer-based surface linker, ortho-aminobenzoic acid (o-ABA). These two classes of surface linkers were selected due to the marked differences in their structural properties. The drift in RCTobserved for the native SAM functionalized gold electrodes was observed to correlate to the drift in the subsequent receptor functionalized SAM. This indicates the importance of the gold-molecule interface for reliable biosensing. Additionally, the magnitude of the baseline drift correlated to the percentage of thiol molecules improperly bound to the gold electrode as evaluated using X-ray Photoelectron Spectroscopy (XPS). Alternatively, the o-ABA functionalized gold electrodes demonstrated negligible drift in the RCT. Furthermore, these polymer functionalized gold electrodes do not require a stabilization period in the buffer solution prior to receptor functionalization. This work emphasizes the importance of understanding and leveraging the structural properties of various classes of surface linkers to ensure the stability of impedimetric measurements.
more »
« less
- Award ID(s):
- 1648035
- PAR ID:
- 10522558
- Publisher / Repository:
- IOP Publishing Limited
- Date Published:
- Journal Name:
- ECS Sensors Plus
- Volume:
- 1
- Issue:
- 3
- ISSN:
- 2754-2726
- Page Range / eLocation ID:
- 031605
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study aims to develop a microelectrode array-based neural probe that can record dopamine activity with high stability and sensitivity. To mimic the high stability of the gold standard method (carbon fiber electrodes), the microfabricated platinum microelectrode is coated with carbon-based nanomaterials. Carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNTs) and carbon quantum dots (CQDs) were selected for this purpose, while a conductive polymer like poly (3-4-ethylene dioxythiophene) (PEDOT) or polypyrrole (PPy) serves as a stable interface between the platinum of the electrode and the carbon-based nanomaterials through a co-electrodeposition process. Based on our comparison between different conducting polymers and the addition of CQD, the CNT–CQD–PPy modified microelectrode outperforms its counterparts: CNT–CQD–PEDOT, CNT–PPy, CNT–PEDOT, and bare Pt microelectrode. The CNT–CQD–PPy modified microelectrode has a higher conductivity, stability, and sensitivity while achieving a remarkable limit of detection (LOD) of 35.20 ± 0.77 nM. Using fast-scan cyclic voltammetry (FSCV), these modified electrodes successfully measured dopamine’s redox peaks while exhibiting consistent and reliable responses over extensive use. This electrode modification not only paves the way for real-time, precise dopamine sensing using microfabricated electrodes but also offers a novel electrochemical sensor for in vivo studies of neural network dynamics and neurological disorders.more » « less
-
Structural supercapacitors, capable of bearing mechanical loads while storing electrical energy, hold great promise for enhancing mobile system efficiencies. However, developing practical structural supercapacitors often involves a challenging balance between mechanical and electrochemical performance, particularly in their electrolytes. Traditional research has focused on bi-continuous phase electrolytes (BPEs), which typically comprise high liquid content that weakens mechanical strength, and inert solid phases that hinder ion conduction and block electrode surfaces. Our previous work introduces a novel approach with a hydrated polymer electrolyte, demonstrating enhanced multifunctionality. This electrolyte, derived from controlled hydration of PET-LiClO4, forms a trihydrate (LiClO4∙3H2O) structure, where water molecules bond with ions without forming a liquid phase, thereby improving ion mobility while maintaining the base polymer's mechanical properties. This new design also promotes better electrochemical interfaces with electrodes, a significant advancement over traditional BPEs. In this study, we further enhance the performance and processability of such hydrated polymer electrolytes by incorporating polylactic acid (PLA) as the base polymer and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the salt. The electrolyte, prepared through solution casting and subsequent controlled hydration, consistently remains an amorphous solid solution in both dry and hydrated states, as confirmed by DSC, XRD, and FTIR analyses. Our tests on ionic conductivity and mechanical properties reveal that adding water to the polymer electrolyte substantially increases ionic conductivity while retaining mechanical properties. A specific composition demonstrated a remarkable increase in ionic conductivity coupled with superior toughness surpassing the base polymer. Furthermore, we successfully fabricated and tested structural supercapacitor devices made of composites of carbon fibers and these new electrolytes. The prototypes presented enhanced toughness with significant energy storage performance, demonstrating their vast application potential due to their outstanding multifunctionality.more » « less
-
Abstract A systematic analysis is used to understand electrical drift occurring in field‐effect transistor (FET) dissolved‐analyte sensors by investigating its dependence on electrode surface‐solution combinations in a remote‐gate (RG) FET configuration. Water at pH 7 and neat acetonitrile, having different dipoles and polarizabilities, are applied to the RG surface of indium tin oxide, SiO2, hexamethyldisilazane‐modified SiO2, polystyrene, poly(styrene‐co‐acrylic acid), poly(3‐hexylthiophene‐2,5‐diyl) (P3HT), and poly [3‐(3‐carboxypropyl)thiophene‐2,5‐diyl] (PT‐COOH). It is discovered that in some cases a slow reorientation of dipoles at the interface induced by gate electric fields causes severe drift and hysteresis because of induced interface potential changes. Conductive and charged P3HT and PT‐COOH increase electrochemical stability by promoting fast surface equilibrations. It is also demonstrated that pH sensitivity of P3HT (17 mV per pH) is an indication of proton doping. PT‐COOH shows further enhanced pH sensitivity (30 mV per pH). This combination of electrochemical stability and pH response in PT‐COOH are proposed as advantageous for polymer‐based biosensors.more » « less
-
Abstract MXenes constitute a rapidly growing family of 2D materials that are promising for optoelectronic applications because of numerous attractive properties, including high electrical conductivity. However, the most widely used titanium carbide (Ti3C2Tx) MXene transparent conductive electrode exhibits insufficient environmental stability and work function (WF), which impede practical applications Ti3C2Txelectrodes in solution‐processed optoelectronics. Herein, Ti3C2TxMXene film with a compact structure and a perfluorosulfonic acid (PFSA) barrier layer is presented as a promising electrode for organic light‐emitting diodes (OLEDs). The electrode shows excellent environmental stability, highWFof 5.84 eV, and low sheet resistanceRSof 97.4 Ω sq−1. The compact Ti3C2Txstructure after thermal annealing resists intercalation of moisture and environmental contaminants. In addition, the PFSA surface modification passivates interflake defects and modulates theWF. Thus, changes in theWFandRSare negligible even after 22 days of exposure to ambient air. The Ti3C2TxMXene is applied for large‐area, 10 × 10 passive matrix flexible OLEDs on substrates measuring 6 × 6 cm. This work provides a simple but efficient strategy to overcome both the limited environmental stability and lowWFof MXene electrodes for solution‐processable optoelectronics.more » « less
An official website of the United States government

