skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Early dynamic changes in iPSC oxygen consumption rate predict future cardiomyocyte differentiation
Abstract Human induced pluripotent stem cells (iPSCs) hold great promise for reducing the mortality of cardiovascular disease by cellular replacement of infarcted cardiomyocytes (CMs). CM differentiation via iPSCs is a lengthy multiweek process and is highly subject to batch‐to‐batch variability, presenting challenges in current cell manufacturing contexts. Real‐time, label‐free control quality attributes (CQAs) are required to ensure efficient iPSC‐derived CM manufacturing. In this work, we report that live oxygen consumption rate measurements are highly predictive CQAs of CM differentiation outcome as early as the first 72 h of the differentiation protocol with an accuracy of 93%. Oxygen probes are already incorporated in commercial bioreactors, thus methods presented in this work are easily translatable to the manufacturing setting. Detecting deviations in the CM differentiation trajectory early in the protocol will save time and money for both manufacturers and patients, bringing iPSC‐derived CM one step closer to clinical use.  more » « less
Award ID(s):
1648035
PAR ID:
10522584
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley Online Library - John Wiley & Sons
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
120
Issue:
8
ISSN:
0006-3592
Page Range / eLocation ID:
2357 to 2362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A 3D microenvironment is known to endorse pancreatic islet development from human induced pluripotent stem cells (iPSCs). However, oxygen supply becomes a limiting factor in a scaffold culture. In this study, oxygen‐releasing biomaterials are fabricated and an oxygenated scaffold culture platform is developed to offer a better oxygen supply during 3D iPSC pancreatic differentiation. It is found that the oxygenation does not alter the scaffold's mechanical properties. The in situ oxygenation improves oxygen tension within the scaffolds. The unique 3D differentiation system enables the generation of islet organoids with enhanced expression of islet signature genes and proteins. Additionally, it is discovered that the oxygenation at the early stage of differentiation has more profound impacts on islet development from iPSCs. More C‐peptide+/MAFA+β and glucagon+/MAFB+α cells formed in the iPSC‐derived islet organoids generated under oxygenated conditions, suggesting enhanced maturation of the organoids. Furthermore, the oxygenated 3D cultures improve islet organoids’ sensitivity to glucose for insulin secretion. It is herein demonstrated that the oxygenated scaffold culture empowers iPSC islet differentiation to generate clinically relevant tissues for diabetes research and treatment. 
    more » « less
  2. Abstract Tissue‐engineered cartilage has shown promising results in the repair of focal cartilage defects. However, current clinical techniques rely on an extra surgical procedure to biopsy healthy cartilage to obtain human chondrocytes. Alternatively, induced pluripotent stem cells (iPSCs) have the ability to differentiate into chondrocytes and produce cartilaginous matrix without the need to biopsy healthy cartilage. However, the mechanical properties of tissue‐engineered cartilage with iPSCs are unknown and might be critical to long‐term tissue function and health. This study used confined compression, cartilage on glass tribology, and shear testing on a confocal microscope to assess the macroscale and microscale mechanical properties of two constructs seeded with either chondrocyte‐derived iPSCs (Ch‐iPSCs) or native human chondrocytes. Macroscale properties of Ch‐iPSC constructs provided similar or better mechanical properties than chondrocyte constructs. Under compression, Ch‐iPSC constructs had an aggregate modulus that was two times larger than chondrocyte constructs and was closer to native tissue. No differences in the shear modulus and friction coefficients were observed between Ch‐iPSC and chondrocyte constructs. On the microscale, Ch‐iPSC and chondrocyte constructs had different depth‐dependent mechanical properties, neither of which matches native tissue. These observed depth‐dependent differences may be important to the function of the implant. Overall, this comparison of multiple mechanical properties of Ch‐iPSC and chondrocyte constructs shows that using Ch‐iPSCs can produce equivalent or better global mechanical properties to chondrocytes. Therefore, iPSC‐seeded cartilage constructs could be a promising solution to repair focal cartilage defects. The chondrocyte constructs used in this study have been implanted into humans for clinical trials. Therefore, Ch‐iPSC constructs could also be used clinically in place of the current chondrocyte construct. 
    more » « less
  3. Abstract Human induced pluripotent stem cell (iPSC)-derived liver organoids serve as models of organogenesis, disease, drug screening, and regenerative medicine. Prevailing methods for generating organoids rely on Matrigel, whose batch-to-batch variability and xenogeneic source pose challenges to mechanistic research and translation to human clinical therapy. In this report, we demonstrate that self-assembled Matrigel-free iPSC-derived organoids developed in rotating wall vessels (RWVs) exhibit greater hepatocyte-specific functions than organoids formed on Matrigel. We show that RWVs produce highly functional liver organoids in part by eliminating the need for Matrigel, which has adverse effects on hepatic lineage differentiation. RWV liver organoids sustain durable function over long-term culture and express a range of mature functional genes at levels comparable to adult human liver, while retaining some fetal features. Our results indicate that RWVs provide a simple and high-throughput way to generate Matrigel-free liver organoids suitable for research and clinical applications. 
    more » « less
  4. Abstract Human‐induced pluripotent stem cells (iPSCs) hold the promise to improve cell‐based therapies. Yet, to meet rising demands and become clinically impactful, sufficient high‐quality iPSCs in quantity must be generated, a task that exceeds current capabilities. In this study, K3 iPSCs cultures were examined using parallel‐labeling metabolic flux analysis (13C‐MFA) to quantify intracellular fluxes at relevant bioprocessing stages: glucose concentrations representative of initial media concentrations and high lactate concentrations representative of fed‐batch culture conditions, prior to and after bolus glucose feeds. The glucose and lactate concentrations are also representative of concentrations that might be encountered at different locations within 3D cell aggregates. Furthermore, a novel method was developed to allow the isotopic tracer [U‐13C3] lactate to be used in the13C‐MFA model. The results indicated that high extracellular lactate concentrations decreased glucose consumption and lactate production, while glucose concentrations alone did not affect rates of aerobic glycolysis. Moreover, for the high lactate cultures, lactate was used as a metabolic substrate to support oxidative mitochondrial metabolism. These results demonstrate that iPSCs have metabolic flexibility and possess the capacity to metabolize lactate to support exponential growth, and that high lactate concentrations alone do not adversely impact iPSC proliferation. 
    more » « less
  5. Abstract Genetic mutations to the Lamin A/C gene (LMNA) can cause heart disease, but the mechanisms making cardiac tissues uniquely vulnerable to the mutations remain largely unknown. Further, patients withLMNAmutations have highly variable presentation of heart disease progression and type.In vitropatient-specific experiments could provide a powerful platform for studying this phenomenon, but the use of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) introduces heterogeneity in maturity and function thus complicating the interpretation of the results of any single experiment. We hypothesized that integrating single cell RNA sequencing (scRNA-seq) with analysis of the tissue architecture and contractile function would elucidate some of the probable mechanisms. To test this, we investigated five iPSC-CM lines, three controls and two patients with a (c.357-2A>G) mutation. The patient iPSC-CM tissues had significantly weaker stress generation potential than control iPSC-CM tissues demonstrating the viability of ourin vitroapproach. Through scRNA-seq, differentially expressed genes between control and patient lines were identified. Some of these genes, linked to quantitative structural and functional changes, were cardiac specific, explaining the targeted nature of the disease progression seen in patients. The results of this work demonstrate the utility of combiningin vitrotools in exploring heart disease mechanics. 
    more » « less