skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drug-Induced Conformational Dynamics of P-Glycoprotein Underlies the Transport of Camptothecin Analogs
P-glycoprotein (Pgp) plays a pivotal role in drug bioavailability and multi-drug resistance development. Understanding the protein’s activity and designing effective drugs require insight into the mechanisms underlying Pgp-mediated transport of xenobiotics. In this study, we investigated the drug-induced conformational changes in Pgp and adopted a conformationally-gated model to elucidate the Pgp-mediated transport of camptothecin analogs (CPTs). While Pgp displays a wide range of conformations, we simplified it into three model states: ‘open-inward’, ‘open-outward’, and ‘intermediate’. Utilizing acrylamide quenching of Pgp fluorescence as a tool to examine the protein’s tertiary structure, we observed that topotecan (TPT), SN-38, and irinotecan (IRT) induced distinct conformational shifts in the protein. TPT caused a substantial shift akin to AMPPNP, suggesting ATP-independent ‘open-outward’ conformation. IRT and SN-38 had relatively moderate effects on the conformation of Pgp. Experimental atomic force microscopy (AFM) imaging supports these findings. Further, the rate of ATPase hydrolysis was correlated with ligand-induced Pgp conformational changes. We hypothesize that the separation between the nucleotide-binding domains (NBDs) creates a conformational barrier for substrate transport. Substrates that reduce the conformational barrier, like TPT, are better transported. The affinity for ATP extracted from Pgp-mediated ATP hydrolysis kinetics curves for TPT was about 2-fold and 3-fold higher than SN-38 and IRT, respectively. On the contrary, the dissociation constants (KD) determined by fluorescence quenching for these drugs were not significantly different. Saturation transfer double difference (STDD) NMR of TPT and IRT with Pgp revealed that similar functional groups of the CPTs are accountable for Pgp-CPTs interactions. Efforts aimed at modifying these functional groups, guided by available structure-activity relationship data for CPTs and DNA-Topoisomerase-I complexes, could pave the way for the development of more potent next-generation CPTs.  more » « less
Award ID(s):
2122027
PAR ID:
10522617
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
24
Issue:
22
ISSN:
1422-0067
Page Range / eLocation ID:
16058
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The efficacy of many cancer drugs is hindered by P-glycoprotein (Pgp), a cellular pump that removes drugs from cells. To improve chemotherapy, drugs capable of evading Pgp must be developed. Despite similarities in structure, vinca alkaloids (VAs) show disparate Pgp-mediated efflux ratios. ATPase activity and binding affinity studies show at least two binding sites for the VAs: high- and low-affinity sites that stimulate and inhibit the ATPase activity rate, respectively. The affinity for ATP from the ATPase kinetics curve for vinblastine (VBL) at the high-affinity site was 2- and 9-fold higher than vinorelbine (VRL) and vincristine (VCR), respectively. Conversely, VBL had the highest Km (ATP) for the low-affinity site. The dissociation constants (KDs) determined by protein fluorescence quenching were in the order VBL < VRL< VCR. The order of the KDs was reversed at higher substrate concentrations. Acrylamide quenching of protein fluorescence indicate that the VAs, either at 10 mM or 150 mM, predominantly maintain Pgp in an open-outward conformation. When 3.2 mM AMPPNP was present, 10 mM of either VBL, VRL, or VCR cause Pgp to shift to an open-outward conformation, while 150 mM of the VAs shifted the conformation of Pgp to an intermediate orientation, between opened inward and open-outward. However, the conformational shift induced by saturating AMPPNP and VCR condition was less than either VBL or VRL in the presence of AMPPNP. At 150 mM, atomic force microscopy (AFM) revealed that the VAs shift Pgp population to a predominantly open-inward conformation. Additionally, STDD NMR studies revealed comparable groups in VBL, VRL, and VCR are in contact with the protein during binding. Our results, when coupled with VAs-microtubule structure-activity relationship studies, could lay the foundation for developing next-generation VAs that are effective as anti-tumor agents. A model that illustrates the intricate process of Pgp-mediated transport of the VAs is presented. 
    more » « less
  2. P-glycoprotein (Pgp) is a prototypical ATP-binding cassette (ABC) transporter of great biological and clinical significance.Pgp confers cancer multidrug resistance and mediates the bioavailability and pharmacokinetics of many drugs (Juliano and Ling, 1976; Ueda et al., 1986; Sharom, 2011). Decades of structural and biochemical studies have provided insights into how Pgp binds diverse compounds (Loo and Clarke, 2000; Loo et al., 2009; Aller et al., 2009; Alam et al., 2019; Nosol et al., 2020; Chufan et al., 2015), but how they are translocated through the membrane has remained elusive. Here, we covalently attached a cyclic substrate to discrete sites of Pgp and determined multiple complex structures in inward- and outward-facing states by cryoEM. In conjunction with molecular dynamics simulations, our structures trace the substrate passage across the membrane and identify conformational changes in transmembrane helix 1 (TM1) as regulators of substrate transport. In mid-transport conformations, TM1 breaks at glycine 72. Mutation of this residue significantly impairs drug transport of Pgp in vivo, corroborating the importance of its regulatory role. Importantly, our data suggest that the cyclic substrate can exit Pgp without the requirement of a wide-open outward-facing conformation, diverting from the common efflux model for Pgp and other ABC exporters. The substrate transport mechanism of Pgp revealed here pinpoints critical targets for future drug discovery studies of this medically relevant system. 
    more » « less
  3. Abstract Membrane proteins play critical roles in disease and in the disposition of many pharmaceuticals. A prime example is P-glycoprotein (Pgp) which moves a diverse range of drugs across membranes and out of the cell before a therapeutic payload can be delivered. Conventional structural biology methods have provided a valuable framework for comprehending the complex conformational changes underlying Pgp function, which also includes ATPase activity, but the lack of real-time information hinders understanding. Atomic force microscopy (AFM) is a single-molecule technique that is well-suited for studying active membrane proteins in bilayers and is poised to advance the field beyond static snapshots. After verifying Pgp activity in surface-support bilayers, we used kymograph analysis in conjunction with AFM imaging and simulations to study structural transitions at the 100 ms timescale. Though kymographs are frequently employed to boost temporal resolution, the limitations of the method have not been well characterized, especially for sparse non-crystalline distributions of pharmaceutically relevant membrane proteins like Pgp. Common experimental challenges are analyzed, including protein orientation, instrument noise, and drift. Surprisingly, a lateral drift of 75% of the protein dimension leads to only a 12% probability of erroneous state transition detection; average dwell time error achieves a maximum value of 6%. Rotational drift of proteins like Pgp, with azimuthally-dependent maximum heights, can lead to artifactual transitions. Torsional constraints can alleviate this potential pitfall. Confidence in detected transitions can be increased by adding conformation-altering ligands such as non-hydrolysable analogs. Overall, the data indicate that AFM kymographs are a viable method to access conformational dynamics for Pgp, but generalizations of the method should be made with caution. 
    more » « less
  4. Hsp104 is a large AAA+ molecular machine that can rescue proteins trapped in amorphous aggregates and stable amyloids by drawing substrate protein into its central pore. Recent cryo-EM studies image Hsp104 at high resolution. We used hydrogen exchange mass spectrometry analysis (HX MS) to resolve and characterize all of the functionally active and inactive elements of Hsp104, many not accessible to cryo-EM. At a global level, HX MS confirms the one noncanonical interprotomer interface in the Hsp104 hexamer as a marker for the spiraled conformation revealed by cryo-EM and measures its fast conformational cycling under ATP hydrolysis. Other findings enable reinterpretation of the apparent variability of the regulatory middle domain. With respect to detailed mechanism, HX MS determines the response of each Hsp104 structural element to the different bound adenosine nucleotides (ADP, ATP, AMPPNP, and ATPγS). They are distinguished most sensitively by the two Walker A nucleotide-binding segments. Binding of the ATP analog, ATPγS, tightly restructures the Walker A segments and drives the global open-to-closed/extended transition. The global transition carries part of the ATP/ATPγS-binding energy to the somewhat distant central pore. The pore constricts and the tyrosine and other pore-related loops become more tightly structured, which seems to reflect the energy-requiring directional pull that translocates the substrate protein. ATP hydrolysis to ADP allows Hsp104 to relax back to its lowest energy open state ready to restart the cycle. 
    more » « less
  5. null (Ed.)
    Abstract Accurate detection of ATP-binding cassette drug transporter ABCB1 expression is imperative for precise identification of drug-resistant tumors. Existing detection methods fail to provide the necessary molecular details regarding the functional state of the transporter. Photoimmunoconjugates are a unique class of antibody–dye conjugates for molecular diagnosis and therapeutic treatment. However, conjugating hydrophobic photosensitizers to hydrophilic antibodies is quite challenging. Here, we devise a photoimmunoconjugate that combines a clinically approved benzoporphyrin derivative (BPD) photosensitizer and the conformational-sensitive UIC2 monoclonal antibody to target functionally active human ABCB1 (i.e., ABCB1 in the inward-open conformation). We show that PEGylation of UIC2 enhances the BPD conjugation efficiency and reduces the amount of non-covalently conjugated BPD molecules by 17%. Size exclusion chromatography effectively separates the different molecular weight species found in the UIC2–BPD sample. The binding of UIC2–BPD to ABCB1 was demonstrated in lipidic nanodiscs and ABCB1-overexpressing triple negative breast cancer (TNBC) cells. UIC2–BPD was found to retain the conformation sensitivity of UIC2, as the addition of ABCB1 modulators increases the antibody reactivity in vitro . Thus, the inherent fluorescence capability of BPD can be used to label ABCB1-overexpressing TNBC cells using UIC2–BPD. Our findings provide insight into conjugation of hydrophobic photosensitizers to conformation-sensitive antibodies to target proteins expressed on the surface of cancer cells. 
    more » « less