skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Substorms and Solar Eclipses: A Mutual Information Based Study
Abstract Solar eclipses present a rare glimpse into the impact of ionospheric electrodynamics on the magnetosphere independent of other well studied seasonal influences. Despite decades of study, we still do not have a complete description of the conditions for geomagnetic substorm onset. We present herein a mutual information based study of previously published substorm onsets and the past two decades of eclipses which indicates the likelihood of co‐occurrence is greater than random chance. A plausible interpretation for this relation suggests that the abrupt fluctuations in ionospheric conductivity during an eclipse may influence the magnetospheric preconditions of substorm initiation. While the mechanism remains unclear, this study presents strong evidence of a link between substorm onset and solar eclipses.  more » « less
Award ID(s):
1935110 2027210 1744828 2027168
PAR ID:
10522747
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
24
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the applicability and performance of the plasma physics based WINDMI model to the analysis and identification of substorm onsets. There are several substorm onset criteria that have been developed into event lists, either from auroral observations or from auroral electrojet features. Five of these substorm onset lists are available at the SuperMAG website. We analyze these lists, aggregate them and use the WINDMI model to assess the identified events, emphasizing the loading/unloading mechanism in substorm dynamics. The WINDMI model employs eight differential equations utilizing solar wind data measured at L1 by the ACE satellite as input to generate outputs such as the magnetotail current, the ring current and the field‐aligned currents (FACs). In particular, the WINDMI model current output represents the westward auroral electrojet, which is related to the substorm SML index. We analyze a decade of solar wind and substorm onset data from 1998 to 2007, encompassing 39,863 onsets. Our findings reveal a significant correlation, with WINDMI‐derived enhancements in FAC coinciding with the identified substorm events approximately 32% of the time. This suggests that a substantial proportion of substorms may be attributed to solar wind driving that results in the loading and unloading of energy in the magnetotail. 
    more » « less
  2. Abstract We have developed a new procedure for combining lists of substorm onset times from multiple sources. We apply this procedure to observational data and to magnetohydrodynamic (MHD) model output from 1–31 January 2005. We show that this procedure is capable of rejecting false positive identifications and filling data gaps that appear in individual lists. The resulting combined onset lists produce a waiting time distribution that is comparable to previously published results, and superposed epoch analyses of the solar wind driving conditions and magnetospheric response during the resulting onset times are also comparable to previous results. Comparison of the substorm onset list from the MHD model to that obtained from observational data reveals that the MHD model reproduces many of the characteristic features of the observed substorms, in terms of solar wind driving, magnetospheric response, and waiting time distribution. Heidke skill scores show that the MHD model has statistically significant skill in predicting substorm onset times. 
    more » « less
  3. Abstract Utilizing magnetic field measurements made by the Iridium satellites and by ground magnetometers in North America we calculate the full ionospheric current system and investigate the substorm current wedge. The current estimates are independent of ionospheric conductance, and are based on estimates of the divergence‐free (DF) ionospheric current from ground magnetometers and curl‐free (CF) ionospheric currents from Iridium. The DF and CF currents are represented using spherical elementary current systems (SECS), derived using a new inversion scheme that ensures the current systems' spatial scales are consistent. We present 18 substorm events and find a typical substorm current wedge (SCW) in 12 events. Our investigation of these substorms shows that during substorm expansion, equivalent field‐aligned currents (EFACs) derived with ground magnetometers are a poor proxy of the actual FAC. We also find that the intensification of the westward electrojet can occur without an intensification of the FACs. We present theoretical investigations that show that the observed deviation between FACs estimated with satellite measurements and ground‐based EFACs are consistent with the presence of a strong local enhancement of the ionospheric conductance, similar to the substorm bulge. Such enhancements of the auroral conductance can also change the ionospheric closure of pre‐existing FACs such that the ground magnetic field, and in particular the westward electrojet, changes significantly. These results demonstrate that attributing intensification of the westward electrojet to SCW current closure can yield false understanding of the ionospheric and magnetospheric state. 
    more » « less
  4. Exploring the effects of solar eclipses on radio wave propagation has been an active area of research since the first experiments conducted in 1912. In the first few decades of ionospheric physics, researchers started to explore the natural laboratory of the upper atmosphere. Solar eclipses offered a rare opportunity to undertake an active experiment. The results stimulated much scientific discussion. Early users of radio noticed that propagation was different during night and day. A solar eclipse provided the opportunity to study this day/night effect with much sharper boundaries than at sunrise and sunset, when gradual changes occur along with temperature changes in the atmosphere and variations in the sun angle. Plots of amplitude time series were hypothesized to indicate the recombination rates and reionization rates of the ionosphere during and after the eclipse, though not all time-amplitude plots showed the same curve shapes. A few studies used multiple receivers paired with one transmitter for one eclipse, with a 5:1 ratio as the upper bound. In these cases, the signal amplitude plots generated for data received from the five receive sites for one transmitter varied greatly in shape. Examination of very earliest results shows the difficulty in using a solar eclipse to study propagation; different researchers used different frequencies from different locations at different times. Solar eclipses have been used to study propagation at a range of radio frequencies. For example, the first study in 1912 used a receiver tuned to 5,500 meters, roughly 54.545 kHz. We now have data from solar eclipses at frequencies ranging from VLF through HF, from many different sites with many different eclipse effects. This data has greatly contributed to our understanding of the ionosphere. The solar eclipse over the United States on August 21, 2017 presents an opportunity to have many locations receiving from the same transmitters. Experiments will target VLF, LF, and HF using VLF/LF transmitters, NIST?s WWVB time station at 60 kHz, and hams using their HF frequency allocations. This effort involves Citizen Science, wideband software defined radios, and the use of the Reverse Beacon Network and WSPRnet to collect eclipse-related data. 
    more » « less
  5. Exploring the effects of solar eclipses on radio wave propagation has been an active area of research since the first experiments conducted in 1912. In the first few decades of ionospheric physics, researchers started to explore the natural laboratory of the upper atmosphere. Solar eclipses offered a rare opportunity to undertake an active experiment. The results stimulated much scientific discussion. Early users of radio noticed that propagation was different during night and day. A solar eclipse provided the opportunity to study this day/night effect with much sharper boundaries than at sunrise and sunset, when gradual changes occur along with temperature changes in the atmosphere and variations in the sun angle. Plots of amplitude time series were hypothesized to indicate the recombination rates and reionization rates of the ionosphere during and after the eclipse, though not all time-amplitude plots showed the same curve shapes. A few studies used multiple receivers paired with one transmitter for one eclipse, with a 5:1 ratio as the upper bound. In these cases, the signal amplitude plots generated for data received from the five receive sites for one transmitter varied greatly in shape. Examination of very earliest results shows the difficulty in using a solar eclipse to study propagation; different researchers used different frequencies from different locations at different times. Solar eclipses have been used to study propagation at a range of radio frequencies. For example, the first study in 1912 used a receiver tuned to 5,500 meters, roughly 54.545 kHz. We now have data from solar eclipses at frequencies ranging from VLF through HF, from many different sites with many different eclipse effects. This data has greatly contributed to our understanding of the ionosphere. The solar eclipse over the United States on August 21, 2017 presents an opportunity to have many locations receiving from the same transmitters. Experiments will target VLF, LF, and HF using VLF/LF transmitters, NIST’s WWVB time station at 60 kHz, and hams using their HF frequency allocations. This effort involves Citizen Science, wideband software defined radios, and the use of the Reverse Beacon Network and WSPRnet to collect eclipse-related data. 
    more » « less