Whether Earth materials exhibit frictional creep or catastrophic failure is a crucial but unresolved problem in predicting landslide and earthquake hazards. Here, we show that field-scale observations of sliding velocity and pore water pressure at two creeping landslides are explained by velocity-strengthening friction, in close agreement with laboratory measurements on similar materials. This suggests that the rate-strengthening friction commonly measured in clay-rich materials may govern episodic slow slip in landslides, in addition to tectonic faults. Further, our results show more generally that transient slow slip can arise in velocity-strengthening materials from modulation of effective normal stress through pore pressure fluctuations. This challenges the idea that episodic slow slip requires a narrow range of transitional frictional properties near the stability threshold, or pore pressure feedbacks operating on initially unstable frictional slip.
more »
« less
Modelling seasonal landslide motion: Does it only depend on fluctuations in normal effective stress?
Abstract Landslide motion is often simulated with interface‐like laws able to capture changes in frictional strength caused by the growth of the pore water pressure and the consequent reduction of the effective stress normal to the plane of sliding. Here it is argued that, although often neglected, the evolution of all the 3D stress components within the basal shear zone of landslides also contributes to changes in frictional strength and must be accounted for to predict changes in seasonal velocity. For this purpose, an augmented sliding‐consolidation model is proposed which allows for the computation of excess pore pressure development and downslope sliding with any constitutive law with 3D stress evolution. Simulations of idealised infinite slope models subjected to hydrologic forcing are used to study the role of in‐situ stress conditions and stress rate multiaxiality. Specifically, a Drucker‐Prager perfectly plastic model is used to replicate frictional failure and shear deformation at the base of landslides. The model reveals that conditions amenable to the shearing of a frictional interface are met only after numerous rainfall cycles, that is, when multiaxial stress rates are suppressed. In this case, the landslide is predicted to move through a seasonal ratcheting controlled only by the effective stress component normal to the plane of sliding. By contrast, in newly formed landslides, the multiaxial stress evolution is found to produce further regimes of motion, from plastic shakedown to cyclic failure, neither of which can be captured by interface‐like frictional laws. Notably, the model suggests that a transition across these regimes can emerge in response to an aggravation of the magnitude of forcing, implying that (i) fluctuations in climate may alter the seasonal trends of motion observed today; (ii) our ability to quantify landslide‐induced risks is impaired unless proper geomechanical models are used to examine their long‐term dynamics.
more »
« less
- Award ID(s):
- 1854951
- PAR ID:
- 10522859
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- International Journal for Numerical and Analytical Methods in Geomechanics
- Volume:
- 47
- Issue:
- 18
- ISSN:
- 0363-9061
- Page Range / eLocation ID:
- 3331 to 3350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Frictional sliding along grain boundaries in brittle shear zones can result in the fragmentation of individual grains, which ultimately can impact slip dynamics. During deformation at small scales, stick–slip motion can occur between grains when existing force chains break due to grain rearrangement or failure, resulting in frictional sliding of granular material. The rearrangement of the grains leads to dilation of the granular package, reducing the shear stress and subsequently leading to slip. Here, we conduct physical experiments employing HydroOrbs, an elasto-plastic material, to investigate grain comminution in granular media under simple shear conditions. Our findings demonstrate that the degree of grain comminution is dependent on both the normal force and the size of the grains. Using the experimental setup, we benchmark Discrete Element Method (DEM) numerical models, which are capable of simulating the movement, rotation, and fracturing of elasto-plastic grains subjected to simple shear. The DEM models successfully replicate both grain comminution patterns and horizontal force fluctuations observed in our physical experiments. They show that increasing normal forces correlate with higher horizontal forces and more fractured grains. The ability of our DEM models to accurately reproduce experimental results opens up new avenues for investigating various parameter spaces that may not be accessible through traditional laboratory experiments, for example, in assessing how internal friction or cohesion affect deformation in granular systems.more » « less
-
Regional‐scale characterization of shallow landslide hazards is important for reducing their destructive impact on society. These hazards are commonly characterized by (a) their location and likelihood using susceptibility maps, (b) landslide size and frequency using geomorphic scaling laws, and (c) the magnitude of disturbance required to cause landslides using initiation thresholds. Typically, this is accomplished through the use of inventories documenting the locations and triggering conditions of previous landslides. In the absence of comprehensive landslide inventories, physics‐based slope stability models can be used to estimate landslide initiation potential and provide plausible distributions of landslide characteristics for a range of environmental and forcing conditions. However, these models are sometimes limited in their ability to capture key mechanisms tied to discrete three‐dimensional (3D) landslide mechanics while possessing the computational efficiency required for broad‐scale application. In this study, the RegionGrow3D (RG3D) model is developed to broadly simulate the area, volume, and location of landslides on a regional scale (≥1,000 km2) using 3D, limit‐equilibrium (LE)‐based slope stability modeling. Furthermore, RG3D is incorporated into a susceptibility framework that quantifies landsliding uncertainty using a distribution of soil shear strengths and their associated probabilities, back‐calculated from inventoried landslides using 3D LE‐based landslide forensics. This framework is used to evaluate the influence of uncertainty tied to shear strength, rainfall scenarios, and antecedent soil moisture on potential landsliding and rainfall thresholds over a large region of the Oregon Coast Range, USA.more » « less
-
Abstract Distributions of landslide size are hypothesized to reflect hillslope strength, and consequently weathering patterns. However, the association of weathering and critical zone architecture with mechanical strength properties of parent rock and soil are poorly-constrained. Here we use three-dimensional stability to analyze 7330 landslides in western Oregon to infer combinations of strength - friction angles and cohesion - through analysis of both failed and reconstructed landslide terrain. Under a range of conditions, our results demonstrate that the failure envelope that relates shear strength and normal stress in landslide terrain is nonlinear owing to an exchange in strength with landslide thickness. Despite the variability in material strength at large scales, the observed gradient in proportional cohesive strength with landslide thickness may serve as a proxy for subsurface weathering. We posit that the observed relationships between strength and landslide thickness are associated with the coalescence of zones of low shear strength driven by fractures and weathering, which constitutes a first-order control on the mechanical behavior of underlying soil and rock mass.more » « less
-
Abstract Catastrophic landslides are often preceded by slow, progressive, accelerating deformation that differs from the persistent motion of slow‐moving landslides. Here, we investigate the motion of a landslide that damaged 12 homes in Rolling Hills Estates (RHE), Los Angeles, California on 8 July 2023, using satellite‐based synthetic aperture radar interferometry (InSAR) and pixel tracking of satellite‐based optical images. To better understand the precursory motion of the RHE landslide, we compared its behavior with local precipitation and with several slow‐moving landslides nearby. Unlike the slow‐moving landslides, we found that RHE was a first‐time progressive failure that failed after one of the wettest years on record. We then applied a progressive failure model to interpret the failure mechanisms and further predict the failure time from the pre‐failure movement of RHE. Our work highlights the importance of monitoring incipient slow motion of landslides, particularly where no discernible historical displacement has been observed.more » « less
An official website of the United States government

