skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increasing mercury bioaccumulation and biomagnification rates of Nile perch (Lates niloticus L.) in Winam Gulf, Lake Victoria, Kenya
The Nile perch (Lates niloticus L.) commercial fishery for Lake Victoria in East Africa is an important source of revenue and employment. We focused on shifts in food web structure and total mercury (THg) bioaccumulation and biomagnification in Nile perch, and lower food web items collected from Winam Gulf (Kenya) sampled 24 years apart (1998 and 2022). Stable isotope carbon (δ13C) values were higher in all species from 2022 compared to 1998. Stable nitrogen isotope (δ15N) values in baseline organisms were lower in 2022 compared to 1998. In Nile perch, δ15N values were correlated with total length, but the δ15N-length regressions were steeper in 1998 compared to 2022 except for one large (158 cm) Nile perch from 1998 with an uncharacteristically low δ15N value. Total Hg concentrations were lower in lower trophic species from 2022 compared to 1998. However, the THg bioaccumulation rate (as a function of fish length) in Nile perch was greater in 2022 compared to 1998 resulting in 24.2 % to 42.4 % higher wet weight dorsal THg concentrations in 2022 Nile perch for market slot size (50 to 85 cm) fish. The contrasting observations of increased THg bioaccumulation with size in 2022 against decreases in the rate of trophic increase with size and lower THg concentrations of lower food web items imply reduced fish growth and potential bioenergetic stressors on Winam Gulf Nile perch. All samples except 1 large Nile perch (139 cm total length collected in 2022) had THg concentrations below the European Union trade limit (500 ng/g wet weight). However, for more vulnerable individuals (women, children and frequent fish eaters), we recommend a decrease in maximum monthly meal consumption for 55–75 cm Nile perch from 16 meals per month calculated for 1998 to a limit of 8 meals per month calculated for 2022.  more » « less
Award ID(s):
1953468
PAR ID:
10522874
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Science of The Total Environment
Volume:
916
Issue:
C
ISSN:
0048-9697
Page Range / eLocation ID:
170059
Subject(s) / Keyword(s):
Bioaccumulation Biomagnification Trophodynamics Bioenergetic stress
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Components of the lower food web (mussels, Caridina and Omena) were collected from stations from Winam Gulf, Lake Victoria, Kenya in 2022 and 2023 to analyze for stable isotopes and total mercury (THg). Temporal comparisons were made with data generated for the same species in 1998. Values of δ15N in mussels and Caridina were similar (6.89‰ vs. 6.78 ± 0.13‰), while Omena occupied an elevated trophic position (9.97 ± 0.24‰) with minor shifts in δ15N over time. All species had elevated δ13C values in 2022–2023 versus 1998 supportive of enhanced eutrophication in the Gulf. THg concentrations exhibited modest spatial differences between sites (< 2.6 fold), but not between Caridina and Omena. Larger temporal differences were apparent relative to spatial patterns with THg concentrations decreasing in study species by 2.8 to 4.1-fold between years. An exposure assessment indicated that Omena, commonly found in local markets, can be consumed up to 0.74 kg/month without generating excess THg exposures. 
    more » « less
  2. To understand the impact reduced mercury (Hg) loading and invasive species have had on methylmercury bioaccumulation in predator fish of Lake Michigan, we reconstructed bioaccumulation trends from a fish archive (1978 to 2012). By measuring fish Hg stable isotope ratios, we related temporal changes in Hg concentrations to varying Hg sources. Additionally, dietary tracers were necessary to identify food web influences. Through combined Hg, C, and N stable isotopic analyses, we were able to differentiate between a shift in Hg sources to fish and periods when energetic transitions (from dreissenid mussels) led to the assimilation of contrasting Hg pools (2000 to present). In the late 1980s, lake trout δ 202 Hg increased (0.4‰) from regulatory reductions in regional Hg emissions. After 2000, C and N isotopes ratios revealed altered food web pathways, resulting in a benthic energetic shift and changes to Hg bioaccumulation. Continued increases in δ 202 Hg indicate fish are responding to several United States mercury emission mitigation strategies that were initiated circa 1990 and continued through the 2011 promulgation of the Mercury and Air Toxics Standards rule. Unlike archives of sediments, this fish archive tracks Hg sources susceptible to bioaccumulation in Great Lakes fisheries. Analysis reveals that trends in fish Hg concentrations can be substantially affected by shifts in trophic structure and dietary preferences initiated by invasive species in the Great Lakes. This does not diminish the benefits of declining emissions over this period, as fish Hg concentrations would have been higher without these actions. 
    more » « less
  3. Due to its persistence and potential ecological and health impacts, mercury (Hg) is a global pollutant of major concern that may reach high concentrations even in remote polar oceans. In contrast to the Arctic Ocean, studies documenting Hg contamination in the Southern Ocean are spatially restricted and large-scale monitoring is needed. Here, we present the first circumpolar assessment of Hg contamination in Antarctic marine ecosystems. Specifically, the Adélie penguin (Pygoscelis adeliae) was used as a bioindicator species, to examine regional variation across 24 colonies distributed across the entire Antarctic continent. Mercury was measured on body feathers collected from both adults (n = 485) and chicks (n = 48) between 2005 and 2021. Because penguins9 diet represents the dominant source of Hg, feather δ13C and δ15N values were measured as proxies of feeding habitat and trophic position. As expected, chicks had lower Hg concentrations (mean ± SD: 0.22 ± 0.08 μg·g_1) than adults (0.49 ± 0.23 μg·g_1), likely because of their shorter bioaccumulation period. In adults, spatial variation in feather Hg concentrations was driven by both trophic ecology and colony location. The highest Hg concentrations were observed in the Ross Sea, possibly because of a higher consumption of fish in the diet compared to other sites (krill-dominated diet). Such large-scale assessments are critical to assess the effectiveness of the Minamata Convention on Mercury. Owing to their circumpolar distribution and their ecological role in Antarctic marine ecosystems, Adélie penguins could be valuable bioindicators for tracking spatial and temporal trends of Hg across Antarctic waters in the future. 
    more » « less
  4. Abstract Despite international regulation, polychlorinated biphenyls (PCBs) are routinely detected at levels threatening human and environmental health. While previous research has emphasized trophic transfer as the principle pathway for PCB accumulation, our study reveals the critical role that non-trophic interactions can play in controlling PCB bioavailability and biomagnification. In a 5-month field experiment manipulating saltmarsh macro-invertebrates, we show that suspension-feeding mussels increase concentrations of total PCBs and toxic dioxin-like coplanars by 11- and 7.5-fold in sediment and 10.5- and 9-fold in cordgrass-grazing crabs relative to no-mussel controls, but do not affect PCB bioaccumulation in algae-grazing crabs. PCB homolog composition and corroborative dietary analyses demonstrate that mussels, as ecosystem engineers, amplify sediment contamination and PCB exposure for this burrowing marsh crab through non-trophic mechanisms. We conclude that these ecosystem engineering activities and other non-trophic interactions may have cascading effects on trophic biomagnification pathways, and therefore exert strong bottom-up control on PCB biomagnification up this coastal food web. 
    more » « less
  5. Monitoring the impacts of global efforts to reduce mercury (Hg) emissions is limited by the collection of biological samples at appropriate spatiotemporal scales. This is especially true in the deep sea, a vast region with food webs that cycle bioaccumulative methylmercury (MeHg). Within a species, understanding the distribution of Hg across tissue types can reveal how Hg accumulates in the body and inform how useful a species is for biomonitoring geographic regions or vertical habitats of the ocean. We focus on a globally distributed deep-sea fish, the longnose lancetfish (Alepisaurus ferox, n = 69 individuals), and measure total mercury (THg) and MeHg concentrations in 10 tissue types (brain, caudal white muscle, dorsal white muscle, gallbladder, gill filament, gonad, heart, intestine, liver, and stomach lining). Across all tissue types, THg and MeHg concentrations were higher in large lancetfish (≥1.8 kg) than small lancetfish (<1.8 kg), but concentrations were relatively stable within size classes. THg levels were highest in liver, intestine, and heart, followed by caudal white muscle, dorsal white muscle, stomach lining, and gill filament, then by gonad and gallbladder. We describe how ontogenetic diet shifts explain Hg bioaccumulation in pelagic predators inhabiting similar waters to lancetfish. We hypothesize that diet shifts to deeper-dwelling prey and fishes drive increases in THg and MeHg concentrations in large lancetfish. We propose lancetfish as a strong candidate for monitoring spatiotemporal variability of Hg in the deep pelagic – they are commonly captured in global fisheries and may reflect Hg sources in two distinct vertical habitats of the ocean. 
    more » « less