Introduction:Estimating the effects of comorbidities on risk of all-cause dementia (ACD) could potentially better inform prevention strategies and identify novel risk factors compared to more common post-hoc analyses from predictive modeling. Methods:In a retrospective cohort study of patients with mild cognitive impairment (MCI) from US Veterans Affairs Medical Centers between 2009 and 2021, we used machine learning techniques from the treatment effect estimation literature to estimate individualized effects of 25 comorbidities (e.g., hypertension) on ACD risk within 10 years of MCI diagnosis. Age and healthcare utilization were adjusted for using exact matching. Results:After matching, of 19,797 MCI patients, 6,767 (34.18%) experienced ACD onset. Dyslipidemia (percentage point increase of ACD risk range across different treatment effect estimation techniques = 0.009–0.044), hypertension (range = 0.007–0.043), and diabetes (range = 0.007–0.191) consistently had non-zero average effects. Discussion:Our findings support known associations between dyslipidemia, hypertension, and diabetes that increase the risk of ACD in MCI patients, demonstrating the potential for these approaches to identify novel risk factors.
more »
« less
Predicting 5‐year dementia conversion in veterans with mild cognitive impairment
INTRODUCTION Identifying mild cognitive impairment (MCI) patients at risk for dementia could facilitate early interventions. Using electronic health records (EHRs), we developed a model to predict MCI to all-cause dementia (ACD) conversion at 5 years. METHODS Cox proportional hazards model was used to identify predictors of ACD conversion from EHR data in veterans with MCI. Model performance (area under the receiver operating characteristic curve [AUC] and Brier score) was evaluated on a held-out data subset. RESULTS Of 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had good discriminative performance (AUC 0.73 [95% confidence interval (CI) 0.72–0.74]), and calibration (Brier score 0.18 [95% CI 0.17–0.18]). Age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors, while body mass index, alcohol abuse, and sleep apnea were protective factors. DISCUSSION EHR-based prediction model had good performance in identifying 5-year MCI to ACD conversion and has potential to assist triaging of at-risk patients. Highlights * Of 59,782 veterans with mild cognitive impairment (MCI), 15,420 (25.8%) converted to all-cause dementia within 5 years. * Electronic health record prediction models demonstrated good performance (area under the receiver operating characteristic curve 0.73; Brier 0.18). * Age and vascular-related morbidities were predictors of dementia conversion. * Synthetic data was comparable to real data in modeling MCI to dementia conversion. Key Points * An electronic health record–based model using demographic and co-morbidity data had good performance in identifying veterans who convert from mild cognitive impairment (MCI) to all-cause dementia (ACD) within 5 years. * Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors for 5-year conversion from MCI to ACD. * High body mass index, alcohol abuse, and sleep apnea were protective factors for 5-year conversion from MCI to ACD. * Models using synthetic data, analogs of real patient data that retain the distribution, density, and covariance between variables of real patient data but are not attributable to any specific patient, performed just as well as models using real patient data. This could have significant implications in facilitating widely distributed computing of health-care data with minimized patient privacy concern that could accelerate scientific discoveries.
more »
« less
- Award ID(s):
- 2124127
- PAR ID:
- 10522986
- Publisher / Repository:
- Wiley Periodicals LLC
- Date Published:
- Journal Name:
- Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 2352-8729
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wiley Periodicals LLC (Ed.)Introduction: Studies investigating the relationship between blood pressure (BP) measurements from electronic health records (EHRs) and Alzheimer’s disease (AD) rely on summary statistics, like BP variability, and have only been validated at a single institution. We hypothesize that leveraging BP trajectories can accurately estimate AD risk across different populations. Methods: In a retrospective cohort study, EHRdata from Veterans Affairs (VA) patients were used to train and internally validate a machine learning model to predict AD onset within 5 years. External validation was conducted on patients from Michigan Medicine (MM). Results: The VA and MM cohorts included 6860 and 1201 patients, respectively. Model performance using BP trajectories was modest but comparable (area under the receiver operating characteristic curve [AUROC] = 0.64 [95% confidence interval (CI) = 0.54–0.73] for VA vs. AUROC = 0.66 [95% CI = 0.55–0.76] for MM). Conclusion: Approaches that directly leverage BP trajectories from EHR data could aid in AD risk stratification across institutions.more » « less
-
Abstract BackgroundAlzheimer’s Disease (AD) is a widespread neurodegenerative disease with Mild Cognitive Impairment (MCI) acting as an interim phase between normal cognitive state and AD. The irreversible nature of AD and the difficulty in early prediction present significant challenges for patients, caregivers, and the healthcare sector. Deep learning (DL) methods such as Recurrent Neural Networks (RNN) have been utilized to analyze Electronic Health Records (EHR) to model disease progression and predict diagnosis. However, these models do not address some inherent irregularities in EHR data such as irregular time intervals between clinical visits. Furthermore, most DL models are not interpretable. To address these issues, we developed a novel DL architecture called Time‐Aware RNN (TA‐RNN) to predict MCI to AD conversion at the next clinical visit. MethodTA‐RNN comprises of a time embedding layer, attention‐based RNN, and prediction layer based on multi‐layer perceptron (MLP) (Figure 1). For interpretability, a dual‐level attention mechanism within the RNN identifies significant visits and features impacting predictions. TA‐RNN addresses irregular time intervals by incorporating time embedding into longitudinal cognitive and neuroimaging data based on attention weights to create a patient embedding. The MLP, trained on demographic data and the patient embedding predicts AD conversion. TA‐RNN was evaluated on Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National Alzheimer’s Coordinating Center (NACC) datasets based on F2 score and sensitivity. ResultMultiple TA‐RNN models were trained with two, three, five, or six visits to predict the diagnosis at the next visit. In one setup, the models were trained and tested on ADNI. In another setup, the models were trained on the entire ADNI dataset and evaluated on the entire NACC dataset. The results indicated superior performance of TA‐RNN compared to state‐of‐the‐art (SOTA) and baseline approaches for both setups (Figure 2A and 2B). Based on attention weights, we also highlighted significant visits (Figure 3A) and features (Figure 3B) and observed that CDRSB and FAQ features and the most recent visit had highest influence in predictions. ConclusionWe propose TA‐RNN, an interpretable model to predict MCI to AD conversion while handling irregular time intervals. TA‐RNN outperformed SOTA and baseline methods in multiple experiments.more » « less
-
Abstract Early diagnosis of Alzheimer’s disease plays a pivotal role in patient care and clinical trials. In this study, we have developed a new approach based on 3D deep convolutional neural networks to accurately differentiate mild Alzheimer’s disease dementia from mild cognitive impairment and cognitively normal individuals using structural MRIs. For comparison, we have built a reference model based on the volumes and thickness of previously reported brain regions that are known to be implicated in disease progression. We validate both models on an internal held-out cohort from The Alzheimer's Disease Neuroimaging Initiative (ADNI) and on an external independent cohort from The National Alzheimer's Coordinating Center (NACC). The deep-learning model is accurate, achieved an area-under-the-curve (AUC) of 85.12 when distinguishing between cognitive normal subjects and subjects with either MCI or mild Alzheimer’s dementia. In the more challenging task of detecting MCI, it achieves an AUC of 62.45. It is also significantly faster than the volume/thickness model in which the volumes and thickness need to be extracted beforehand. The model can also be used to forecast progression: subjects with mild cognitive impairment misclassified as having mild Alzheimer’s disease dementia by the model were faster to progress to dementia over time. An analysis of the features learned by the proposed model shows that it relies on a wide range of regions associated with Alzheimer's disease. These findings suggest that deep neural networks can automatically learn to identify imaging biomarkers that are predictive of Alzheimer's disease, and leverage them to achieve accurate early detection of the disease.more » « less
-
Abstract AimsMyocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the USA with morbidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called CShock, to improve early detection of cardiogenic shock in the cardiac intensive care unit (ICU). Methods and resultsWe developed and externally validated a deep learning-based risk stratification tool, called CShock, for patients admitted into the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict the onset of cardiogenic shock. We prepared a cardiac ICU dataset using the Medical Information Mart for Intensive Care-III database by annotating with physician-adjudicated outcomes. This dataset which consisted of 1500 patients with 204 having cardiogenic/mixed shock was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York University (NYU) Langone Health cardiac ICU database which was also annotated with physician-adjudicated outcomes. The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock. CShock achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792–0.850). CShock was externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% CI 0.717–0.884), demonstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock development based on Shapley values. The other top 10 predictors are having an admission diagnosis of myocardial infarction with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma Scale, blood urea nitrogen, systolic blood pressure, serum chloride, serum sodium, and arterial blood pH. ConclusionThe novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and improve the outcomes for millions of patients who suffer from myocardial infarction and heart failure.more » « less
An official website of the United States government

