Growing urbanisation and imperviousness have augmented magnitudes of peak flows, resulting in flooding especially during extreme events. Flood forecast of extreme events can rely on real‐time ensemble flood forecasting systems. Such systems often use predictions from physical models and precipitation ensembles to predict downstream urban flood hydrographs. However, these methods are seldom used in small catchments, where flood predictions may assist emergency management. We explore the relative utility of two models, the Sacramento Model (SAC‐SMA) and an adaptive neuro‐fuzzy inference system (ANFIS) for ensemble flood prediction for nine small urban catchments located near New York City. The models were used to reforecast streamflow for Hurricane Irene (160 mm) and a 35 mm storm across lead times from 3 to 24 hr. Differences in performance between models were small for short (3 hr) lead times, and were similar for the 35 mm storm. Reforecasts of hurricane Irene at 24‐hr lead times show strong performance for SAC‐SMA, but a decline in performance for ANFIS. Model performance did not vary systematically with either catchment size or imperviousness. Our results suggest that model selection is especially important when reforecasting large rain events with longer lead times in small urban catchments.
Urbanisation is an important driver of changes in streamflow. These changes are not uniform across catchments due to the diverse nature of water sources, storage, and pathways in urban river systems. While land cover data are typically used in urban hydrology analyses, other characteristics of urban systems (such as water management practices) are poorly quantified which means that urbanisation impacts on streamflow are often difficult to detect and quantify. Here, we assess urban impacts on streamflow dynamics for 711 catchments across England and Wales. We use the CAMELS-GB dataset, which is a large-sample hydrology dataset containing hydro-meteorological timeseries and catchment attributes characterising climate, geology, water management practices and land cover. We quantify urban impacts on a wide range of streamflow dynamics (flow magnitudes, variability, frequency, and duration) using random forest models. We demonstrate that wastewater discharges from sewage treatment plants and urban land cover dominate urban hydrology signals across England and Wales. Wastewater discharges increase low flows and reduce flashiness in urban catchments. In contrast, urban land cover increases flashiness and frequency of medium and high flow events. We highlight the need to move beyond land cover metrics and include other features of urban river systems in hydrological analyses to quantify current and future drivers of urban streamflow.
more » « less- Award ID(s):
- 2124923
- PAR ID:
- 10523029
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 19
- Issue:
- 8
- ISSN:
- 1748-9326
- Format(s):
- Medium: X Size: Article No. 084016
- Size(s):
- Article No. 084016
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Current land‐use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non‐point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land‐cover based classification. We examine the distribution of land‐cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high‐resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land‐cover based classes of urbanization (rural, low, medium and high density) to our composition and structure‐based classification (a nine‐class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3−‐N, TDN, DOC, Cl−, and Br−concentration, while the ISC‐based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.
-
Abstract Streams in semi‐arid urban and agricultural environments are often heavily diverted for anthropogenic purposes. However, they simultaneously receive substantial inflows from a variety of ungaged sources including stormwater returns, tile drainage, and irrigation runoff that help sustain flow during dry periods. Due to the inability to identify sources or directly gage many of these inflows, there is a clear need for methods to understand source origination while quantifying potential gains and losses over highly impacted reaches. In the context of the Logan River Observatory, historical gage data illustrate the importance of ungaged and unidentified inflows on maintaining or enhancing flows in both urban and agricultural reaches containing large diversions. To understand the inflows in this portion of the Logan River, we first analysed water samples for ions collected from a subset of representative inflow sources and applied clustering analyses to establish inflow source classifications and associated ion concentration ranges. These representative concentration ranges, combined with mainstem flow and river ion samples taken at sub‐reach scales, allow for the application of flow and mass balances to quantify inflow rates from different sources as well as any losses. These calculations demonstrate significant gains and losses occurring in many sub‐reaches during three sampling events. The dominant land use (urban or agriculture) and flow regime at the time of sampling were the primary drivers of gains and losses. These exchanges were found to be most important below large diversions during low flow conditions. This highlights the need to classify inflow sources (urban or agriculture, surface or groundwater) and estimate their contributions to anticipate instream consequences of land use and water management decisions. As irrigation and water conveyance practices become more efficient, a portion of these ungaged inflows could be diminished or eliminated, thus further depleting streamflow during dry periods.
-
Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000–69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30–200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales.more » « less
-
null (Ed.)Most people in the world live in urban areas, and their high population densities, heavy reliance on external sources of food, energy, and water, and disproportionately large waste production result in severe and cumulative negative environmental effects. Integrated study of urban areas requires a system-of-systems analytical framework that includes modeling with social and biophysical data. We describe preliminary work toward an integrated urban food-energy-water systems (FEWS) analysis using co-simulation for assessment of current and future conditions, with an emphasis on local (urban and urban-adjacent) food production. We create a framework to enable simultaneous analyses of climate dynamics, changes in land cover, built forms, energy use, and environmental outcomes associated with a set of drivers of system change related to policy, crop management, technology, social interaction, and market forces affecting food production. The ultimate goal of our research program is to enhance understanding of the urban FEWS nexus so as to improve system function and management, increase resilience, and enhance sustainability. Our approach involves data-driven co-simulation to enable coupling of disparate food, energy and water simulation models across a range of spatial and temporal scales. When complete, these models will quantify energy use and water quality outcomes for current systems, and determine if undesirable environmental effects are decreased and local food supply is increased with different configurations of socioeconomic and biophysical factors in urban and urban-adjacent areas. The effort emphasizes use of open-source simulation models and expert knowledge to guide modeling for individual and combined systems in the urban FEWS nexus.more » « less