skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying the effects of exceptional fossil preservation on the global availability of phylogenetic data in deep time
Fossil deposits with exceptional preservation (“lagerstätten”) provide important details not typically preserved in the fossil record, such that they hold an outsized influence on our understanding of biodiversity and evolution. In particular, the potential bias imparted by this so-called “lagerstätten effect” remains a critical, but underexplored aspect of reconstructing evolutionary relationships. Here, we quantify the amount of phylogenetic information available in the global fossil records of 1,327 species of non-avian theropod dinosaurs, Mesozoic birds, and fossil squamates (e.g., lizards, snakes, mosasaurs), and then compare the influence of lagerstätten deposits on phylogenetic information content and taxon selection in phylogenetic analyses to other fossil-bearing deposits. We find that groups that preserve a high amount of phylogenetic information in their global fossil record (e.g., non-avian theropods) are less vulnerable to a “lagerstätten effect” that leads to disproportionate representation of fossil taxa from one geologic unit in an evolutionary tree. Additionally, for each taxonomic group, we find comparable amounts of phylogenetic information in lagerstätten deposits, even though corresponding morphological character datasets vary greatly. Finally, we unexpectedly find that ancient sand dune deposits of the Late Cretaceous Gobi Desert of Mongolia and China exert an anomalously large influence on the phylogenetic information available in the squamate fossil record, suggesting a “lagerstätten effect” can be present in units not traditionally considered lagerstätten. These results offer a phylogenetics-based lens through which to examine the effects of exceptional fossil preservation on biological patterns through time and space, and invites further quantification of evolutionary information in the rock record.  more » « less
Award ID(s):
2305564
PAR ID:
10523105
Author(s) / Creator(s):
; ; ;
Editor(s):
Dececchi, T Alexander
Publisher / Repository:
PLOS.org
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
2
ISSN:
1932-6203
Page Range / eLocation ID:
e0297637
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fossil data are subject to inherent biological, geologic, and anthropogenic filters that can distort our interpretations of ancient life and environments. The inevitable presence of incomplete fossils thus requires a holistic assessment of how to navigate the downstream effects of bias on our ability to accurately reconstruct aspects of biology in deep time. In particular, we must assess how biases affect our capacity to infer evolutionary relationships, which are essential to analyses of diversification, paleobiogeography, and biostratigraphy in Earth history. In this study, we use an established completeness metric to quantify the effects of taphonomic filters on the amount of phylogenetic information available in the fossil record of 795 extinct squamate (e.g., lizards, snakes, amphisbaenians, and mosasaurs) species spanning 242 Myr of geologic time. This study found no meaningful relationship between spatiotemporal sampling intensity and fossil record completeness. Instead, major differences in squamate fossil record completeness stem from a combination of anatomy/body size and affinities of different squamate groups to specific lithologies and depositional environments. These results reveal that naturally occurring processes create structural megabiases that filter anatomical and phylogenetic data in the squamate fossil record, while anthropogenic processes play a secondary role. 
    more » « less
  2. Abstract Konservat-Lagerstätten—deposits with exceptionally preserved fossils—vary in abundance across geographic and stratigraphic space due to paleoenvironmental heterogeneity. While oceanic anoxic events (OAEs) may have promoted preservation of marine lagerstätten, the environmental controls on their taphonomy remain unclear. Here, we provide new data on the mineralization of fossils in three Lower Jurassic Lagerstätten—Strawberry Bank (UK), Ya Ha Tinda (Canada), and Posidonia Shale (Germany) —and test the hypothesis that they were preserved under similar conditions. Biostratigraphy indicates that all three Lagerstätten were deposited during the Toarcian OAE (TOAE), and scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) show that each deposit contains a variety of taxa preserved as phosphatized skeletons and tissues. Thus, despite their geographic and paleoenvironmental differences, all of these Lagerstätten were deposited in settings conducive to phosphatization, indicating that the TOAE fostered exceptional preservation in marine settings around the world. Phosphatization may have been fueled by phosphate delivery from climatically-driven sea level change and continental weathering, with anoxic basins acting as phosphorus traps. 
    more » « less
  3. ABSTRACT Konservat-Lagerstätten provide the most complete snapshots of ancient organisms and communities in the fossil record. In the Mesozoic, these deposits are rarely found in marine facies outside Oceanic Anoxic Event (OAE) intervals, suggesting that OAEs set the stage for exceptional fossil preservation. Although anoxia does not guarantee survival of non-biomineralized tissues or articulated skeletons, other OAE phenomena may promote their conservation. Here, we test this hypothesis with a taphonomic analysis of the Konservat-Lagerstätte in the black shales and siltstones of the Jurassic Fernie Formation at Ya Ha Tinda (Alberta, Canada). This deposit contains crustacean cuticles, coleoid gladii with ink sacs and mantle tissues, and articulated skeletons of fish, crinoids, and ichthyosaurs. The fossils were preserved in the Pliensbachian and Toarcian (Early Jurassic) when euxinic conditions were common in the area, in part, due to the ∼183 Ma Toarcian OAE. Some of the fossils contain carbonaceous material, but the majority consists of apatite minerals, and phosphatic gladii demonstrate that some animals were preserved through secondary phosphate mineralization. Phosphatization generally occurs within phosphate-rich sediment, but oceanic anoxia causes sediment to release phosphorus and prevents animals from colonizing seafloor habitats. Accordingly, we propose that the animals were preserved during brief episodes of bottom water oxia and/or dysoxia, when the environment would have been most favorable to benthic communities and phosphate mineralization. In this setting, phosphatization may have been fueled by phosphate delivery from continental weathering in response to climatic warming, ocean upwelling of eutrophic water, and/or nutrient trapping by anoxia in the basin. 
    more » « less
  4. Animals originated in the Neoproterozoic and ‘exploded’ into the fossil record in the Cambrian. The Cambrian also represents a high point in the animal fossil record for the preservation of soft tissues that are normally degraded. Specifically, fossils from Burgess Shale-type (BST) preservational windows give paleontologists an unparalleled view into early animal evolution. Why this time interval hosts such exceptional preservation, and why this preservational window declines in the early Paleozoic, have been long-standing questions. Anoxic conditions have been hypothesized to play a role in BST preservation, but recent geochemical investigations of these deposits have reached contradictory results with respect to the redox state of overlying bottom waters. Here, we report a multi-proxy geochemical study of the Lower Cambrian Mural Formation, Alberta, Canada. At the type section, the Mural Formation preserves rare recalcitrant organic tissues in shales that were deposited near storm wave base (a Tier 3 deposit; the worst level of soft-tissue preservation). The geochemical signature of this section shows little to no evidence of anoxic conditions, in contrast with published multi-proxy studies of more celebrated Tier 1 and 2 deposits. These data help confirm that ‘decay-limited’ BST biotas were deposited in more oxygenated conditions, and support a role for anoxic conditions in BST preservation. Finally, we discuss the role of iron reduction in BST preservation, including the formation of iron-rich clays and inducement of sealing seafloor carbonate cements. As oceans and sediment columns became more oxygenated and more sulfidic through the early Paleozoic, these geochemical changes may have helped close the BST taphonomic window. 
    more » « less
  5. Horseshoe crabs (class Xiphosura) are a long-lived clade of aquatic chelicerate arthropods with a fossil record spanning approximately 480 million years. Though Xiphosura are often noted for their morphological stability, further investigation of evolutionary rate and paleoecological trends have revealed a remarkably dynamic clade, with both temporal and phylogenetic variability in evolutionary trends. Additionally, heterochrony has been revealed to be a strong driver behind xiphosuran evolution and the exploration of non-marine niches. Using combined geometric morphometric and evolutionary rate techniques, we further highlight the incongruency of the fossil record of xiphosurans with their designation as a “living fossil” or stabilomorph clade. Here, we compare the results of a geometric morphometric analysis with a discrete character evolutionary rate calculation performed using the R package Claddis. Both analyses incorporated 55 xiphosuran species, ranging temporally from the Ordovician Lunataspis aurora to all four modern species. Morphometric data was collected as 2Dlandmarks and semi-landmarks, with variable numbers of points due to varying levels of preservation amongst fossil specimens. These data were then used to produce a PCA for the visualization of morphospace. Both studies support a dynamic evolutionary history for Xiphosura. The discrete character analysis revealed peaks in discrete character evolution in the heterochronic non-marine clades, as well as an overall declining trend in evolutionary rate. Similarly, the clades with higher evolutionary rates occupy a wider portion of morphospace compared with the more morphologically stable clades. 
    more » « less