skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MOSS: AI Platform for Discovery of Corrosion-Resistant Materials
Amid corrosion degradation of metallic structures causing expenses nearing 3 trillion or 4% of the GDP annually along with major safety risks, the adoption of AI technologies for accelerating the materials science life-cycle for developing materials with better corrosive properties is paramount. While initial machine learning models for corrosion assessment are being proposed in the literature, their incorporation into end-to-end tools for field experimentation by corrosion scientists remains largely unexplored. To fill this void, our university data science team in collaboration with the materials science unit at the Army Research Lab have jointly developed MOSS, an innovative AI-based digital platform to support material science corrosion research. MOSS features user-friendly iPadOS app for in-field corrosion progression data collection, deep-learning corrosion assessor, robust data repository system for long-term experimental data modeling, and visual analytics web portal for material science research. In this demonstration, we showcase the key innovations of the MOSS platform via use cases supporting the corrosion exploration processes, with the promise of accelerating the discovery of new materials. We open a MOSS video demo at: https://www.youtube.com/watch?v=CzcxMMRsxkE  more » « less
Award ID(s):
2021871
PAR ID:
10523445
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Association for Computing Machinery
Date Published:
ISBN:
9798400701245
Page Range / eLocation ID:
5128–5132
Subject(s) / Keyword(s):
automatic assessment corrosion science deep learning
Format(s):
Medium: X
Location:
Birmingham, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. Corrosion is a prevalent issue in numerous industrial fields, causing expenses nearing $3 trillion or 4% of the GDP annually with safety threats and environmental pollution. To timely qualify and validate new corrosion-inhibiting materials on a large scale, accurate and efficient corrosion assessment is crucial. Yet it is hindered by a lack of automatic tools for expert-level corrosion segmentation of material science experimental images. Developing such tools is challenging due to limited domain-valid data, image artifacts visually similar to corrosion, various corrosion morphology, strong class imbalance, and millimeter-precision corrosion boundaries. To help the community address these challenges, we curate the first expert-level segmentation annotations for a real-world image dataset [1] for scientific corrosion segmentation. In addition, we design a deep learning-based model, called DeepSC-Edge that achieves guidance of ground-truth edge learning by adopting a novel loss that avoids over-fitting to edges. It also is enriched by integrating a class-balanced loss that improves segmentation with small area but crucial edges of interest for scientific corrosion assessment. Our dataset and methods pave the way to advanced deep-learning models for corrosion assessment and generation – promoting new research to connect computer vision and material science discovery. Once the appropriate approvals have been cleared, we expect to release the code and data at: https://arl.wpi.edu/ 
    more » « less
  2. Thanks to the rapid advances in artificial intelligence, AI for science (AI4Science) has emerged as one of the new promising research directions for modern science and engineering. In this review, we focus on recent efforts to develop knowledge-driven Bayesian learning and experimental design methods for accelerating the discovery of novel functional materials as well as enhancing the understanding of composition-process-structure-property relationships. We specifically discuss the challenges and opportunities in integrating prior scientific knowledge and physics principles with AI and machine learning (ML) models for accelerating materials and knowledge discovery. The current state-of-the-art methods in knowledge-based prior construction, model fusion, uncertainty quantification, optimal experimental design, and symbolic regression are detailed in the review, along with several detailed case studies and results in materials discovery. 
    more » « less
  3. Abstract Accelerating the design and development of new advanced materials is one of the priorities in modern materials science. These efforts are critically dependent on the development of comprehensive materials cyberinfrastructures which enable efficient data storage, management, sharing, and collaboration as well as integration of computational tools that help establish processing–structure–property relationships. In this contribution, we present implementation of such computational tools into a cloud-based platform called BisQue (Kvilekval et al., Bioinformatics 26(4):554, 2010). We first describe the current state of BisQue as an open-source platform for multidisciplinary research in the cloud and its potential for 3D materials science. We then demonstrate how new computational tools, primarily aimed at processing–structure–property relationships, can be implemented into the system. Specifically, in this work, we develop a module for BisQue that enables microstructure-sensitive predictions of effective yield strength of two-phase materials. Towards this end, we present an implementation of a computationally efficient data-driven model into the BisQue platform. The new module is made available online (web address:https://bisque.ece.ucsb.edu/module_service/Composite_Strength/) and can be used from a web browser without any special software and with minimal computational requirements on the user end. The capabilities of the module for rapid property screening are demonstrated in case studies with two different methodologies based on datasets containing 3D microstructure information from (i) synthetic generation and (ii) sampling large 3D volumes obtained in experiments. 
    more » « less
  4. Scientific literature presents a wellspring of cutting-edge knowledge for materials science, including valuable data (e.g., numerical data from experiment results, material properties and structure). These data are critical for accelerating materials discovery by data-driven machine learning (ML) methods. The challenge is, it is impossible for humans to manually extract and retain this knowledge due to the extensive and growing volume of publications.To this end, we explore a fine-tuned BERT model for extracting knowledge. Our preliminary results show that our fine-tuned Bert model reaches an f-score of 85% for the materials named entity recognition task. The paper covers background, related work, methodology including tuning parameters, and our overall performance evaluation. Our discussion offers insights into our results, and points to directions for next steps. 
    more » « less
  5. Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace. 
    more » « less