skip to main content

This content will become publicly available on November 1, 2024

Title: Knowledge-driven learning, optimization, and experimental design under uncertainty for materials discovery
Thanks to the rapid advances in artificial intelligence, AI for science (AI4Science) has emerged as one of the new promising research directions for modern science and engineering. In this review, we focus on recent efforts to develop knowledge-driven Bayesian learning and experimental design methods for accelerating the discovery of novel functional materials as well as enhancing the understanding of composition-process-structure-property relationships. We specifically discuss the challenges and opportunities in integrating prior scientific knowledge and physics principles with AI and machine learning (ML) models for accelerating materials and knowledge discovery. The current state-of-the-art methods in knowledge-based prior construction, model fusion, uncertainty quantification, optimal experimental design, and symbolic regression are detailed in the review, along with several detailed case studies and results in materials discovery.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Additive manufacturing has become one of the forefront technologies in fabrication, enabling products impossible to manufacture before. Although many materials exist for additive manufacturing, most suffer from performance trade-offs. Current materials are designed with inefficient human-driven intuition-based methods, leaving them short of optimal solutions. We propose a machine learning approach to accelerating the discovery of additive manufacturing materials with optimal trade-offs in mechanical performance. A multiobjective optimization algorithm automatically guides the experimental design by proposing how to mix primary formulations to create better performing materials. The algorithm is coupled with a semiautonomous fabrication platform to substantially reduce the number of performed experiments and overall time to solution. Without prior knowledge of the primary formulations, the proposed methodology autonomously uncovers 12 optimal formulations and enlarges the discovered performance space 288 times after only 30 experimental iterations. This methodology could be easily generalized to other material design systems and enable automated discovery. 
    more » « less
  2. Abstract

    Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug–drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, natural language processing based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.

    more » « less
  3. Autonomous experimental systems offer a compelling glimpse into a future where closed-loop, iterative cycles—performed by machines and guided by artificial intelligence (AI) and machine learning (ML)—play a foundational role in materials research and development. This perspective draws attention to the roles of networks and interfaces—of and between humans and machines—for the purpose of generating knowledge and accelerating innovation. Polymers, a class of materials with massive global impact, present a unique opportunity for the application of informatics and automation to pressing societal challenges. To develop these networks and interfaces in polymer science, the Community Resource for Innovation in Polymer Technology (CRIPT)—a polymer data ecosystem based on novel polymer data model, representation, search, and visualization technologies—is introduced. The ongoing co-design efforts engage stakeholders in industry, academia, and government to uncover rapidly actionable, high-impact opportunities to build networks, bridge interfaces, and catalyze innovation in polymer technology. 
    more » « less
  4. The demand is growing for a populace that is AI literate; such literacy centers on enabling individuals to evaluate, collaborate with, and effectively use AI. Because the middle school years are a critical time for developing youths’ perceptions and dispositions toward STEM, creating engaging AI learning experiences for middle grades students (ages 11 to 14) is paramount. The need for providing enhanced access to AI learning opportunities is especially pronounced in rural areas, which are typically underserved and underresourced. Inspired by prior research that game design holds significant potential for cultivating student interest and knowledge in computer science, we are designing, developing, and iteratively refining an AI-centered game development environment that infuses AI learning into game design activities. In this work, we review design principles for game design interventions focused on middle grades computer science education and explore how to introduce AI learning experiences into interactive game-design activities. We also discuss results from our initial co-design sessions with middle grades students and teachers in rural communities. 
    more » « less
  5. Scientific literature presents a wellspring of cutting-edge knowledge for materials science, including valuable data (e.g., numerical data from experiment results, material properties and structure). These data are critical for accelerating materials discovery by data-driven machine learning (ML) methods. The challenge is, it is impossible for humans to manually extract and retain this knowledge due to the extensive and growing volume of publications.To this end, we explore a fine-tuned BERT model for extracting knowledge. Our preliminary results show that our fine-tuned Bert model reaches an f-score of 85% for the materials named entity recognition task. The paper covers background, related work, methodology including tuning parameters, and our overall performance evaluation. Our discussion offers insights into our results, and points to directions for next steps. 
    more » « less