skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining Dietary Diversity in a Paleogene Hyrax (Afrotheria, Mammalia) Fauna from the Fayum Depression, Egypt using Mesowear Analysis
With most ungulates absent from Africa until the Miocene, the morphologically diverse hyraxes were a major component of the Eocene-Oligocene community at Quarry L-41 (~34 Ma) in the Fayum Depression, Egypt. However, their foraging strategies are poorly understood. This study focuses on four extinct hyraxes: Thyrohyrax meyeri, Thyrohyrax litholagus, and Megalohyrax eocaneus, all expected to be grazers; and Saghatherium bowni, previously described as a browser. Mesowear can place extinct herbivores on a spectrum from grazer to browser based on the abrasiveness oftheir lifetime diets. Crown height, tooth length, and cusp angle were measured for the first lower molars (M1) in these four hyrax species. Specimens were categorized into Wear Classes (WC), which correspond with developmental age. WC ranged from 1, first adult molar fully erupted, to 8, all molars extremely worn with significant dentin exposure. Change in mean crown height and cusp angle across different wear classes was not significantly different. Nonetheless, apparent trends suggest compositional differences in diet. Change in mean crown height for Saghertherium indicates that it incorporated more graze than browse because M1 wear occurred in earlier WCs and increased throughout life. In contrast, less wear for WC 1 through 4 in Thyrohyrax indicates that it incorporated more browse. This agrees with recently collected carbon isotope data, which suggests that Saghatherium’s diet included more graze than Thyrohyrax’s. These data are consistent with the description ofThyrohyrax as an arboreal browser. The change in mean crown height for Megalohyrax also suggests a less abrasive diet, although sample size for Megalohyrax was smaller. The browse-biased diet for Megalohyrax is surprising, as isotope values suggest a more open environment. Browsing in salt-stressed environments, forest canopies or forest edges could explain these combined data. Megalohyrax could have foraged in a wider variety of environments than the other taxa because its larger size enabled a wider range. By reconstructing the diets and niche partitioning among morphologically diverse hyraxes at L-41, we hope to gain insights about the ecosystem represented by L-41 near the Eocene-Oligocene Boundary (EOB). This locality represents a time of ecological dynamism when many mammalian communities were dramatically restructured, though the impact of the EOB on African mammal communities remains poorly understood.  more » « less
Award ID(s):
2023087
PAR ID:
10523471
Author(s) / Creator(s):
; ;
Publisher / Repository:
Society of Vertebrate Paleontology
Date Published:
Subject(s) / Keyword(s):
Mammals, Cenozoic, Paleogene, Paleoecology
Format(s):
Medium: X
Location:
Annual Meeting of the Society of Vertebrate Paleontology in Cincinnati, Ohio
Sponsoring Org:
National Science Foundation
More Like this
  1. As herbivorous, diphyodont mammals with relatively low-crowned molars, primates experience changes in dental function during their lifetimes as teeth become progressively worn. Maintaining tooth function with wear is thought to pose a particular challenge for folivorous primates whose diets emphasize molar shearing actions. Recent studies using dental topographic methods suggest that certain primate folivores have molar morphology that maintains or increases functional shearing surfaces with tooth wear (‘dental sculpting’). Evidence for this phenomenon has been found in folivorous but not frugivorous New World monkeys, supporting the hypothesis that dental sculpting is an adaptive trait linked to diet. This analysis extends these methods to two sympatric Old World monkeys from Sabah, Malaysia, possessing distinct diets and dental morphologies: the folivorous colobine Trachypithecus cristatus (n=25) and the more frugivorous cercopithecine Macaca fascicularis (n=22). For each species, 3D shear crest lengths and four dental topographic variables (relief index, slope, angularity, and Dirichlet Normal Energy [DNE]) were measured from variably worn lower second molars. Preliminary results indicate that for any given degree of wear, Trachypithecus has longer shear crest lengths and higher relief, slope, angularity, and DNE than Macaca. The two species exhibit different patterns and degrees of change in topography and shearing crest lengths across the wear series. However, these changes do not always match expectations based on their respective diets. Correlations between 3D shear crest lengths and other dental topographic measurements suggests that the type of metric used to assess shearing potential may affect whether or not dental sculpting is detected. 
    more » « less
  2. Adaptive radiations are bursts in biodiversity that generate new evolutionary lineages and phenotypes. However, because they typically occur over millions of years, it is unclear how their macroevolutionary dynamics vary through time and among groups of organisms. Phyllostomid bats radiated extensively for diverse diets-from insects to vertebrates, fruit, nectar, and blood-and we use their molars as a model system to examine the dynamics of adaptive radiations. Three-dimensional shape analyses of lower molars of Noctilionoidea (Phyllostomidae and close relatives) indicate that different diet groups exhibit distinct morphotypes. Comparative analyses further reveal that phyllostomids are a striking example of a hierarchical radiation; phyllostomids' initial, higher-level diversification involved an "early burst" in molar morphological disparity as lineages invaded new diet-affiliated adaptive zones, followed by subsequent lower-level diversifications within adaptive zones involving less dramatic morphological changes. We posit that strong selective pressures related to initial shifts to derived diets may have freed molars from morpho-functional constraints associated with the ancestral molar morphotype. Then, lineages with derived diets (frugivores and nectarivores) diversified within broad adaptive zones, likely reflecting finer-scale niche partitioning. Importantly, the observed early burst pattern is only evident when examining molar traits that are strongly linked to diet, highlighting the value of ecomorphological traits in comparative studies. Our results support the hypothesis that adaptive radiations are commonly hierarchical and involve different tempos and modes at different phylogenetic levels, with early bursts being more common at higher levels. 
    more » « less
  3. null (Ed.)
    Palaeoecological interpretations are based on our understanding of dietary and habitat preferences of fossil taxa. While morphology provides approximations of diets, stable isotope proxies provide insights into the realized diets of animals. We present a synthesis of the isotopic ecologies (δ13C from tooth enamel) of North American mammalian herbivores since approximately 7 Ma. We ask: (i) do morphological interpretations of dietary behaviour agree with stable isotope proxy data? (ii) are grazing taxa specialists, or is grazing a means to broaden the dietary niche? and (iii) how is dietary niche breadth attained in taxa at the local level? We demonstrate that while brachydont taxa are specialized as browsers, hypsodont taxa often have broader diets that included more browse consumption than previously anticipated. It has long been accepted that morphology imposes limits on the diet; this synthesis supports prior work that herbivores with ‘grazing’ adaptions, such as hypsodont teeth, have the ability to consume grass but are also able to eat other foods. Notably, localized dietary breadth of even generalist taxa can be narrow (approx. 30 to 60% of a taxon's overall breadth). This synthesis demonstrates that ‘grazing-adapted’ taxa are varied in their diets across space and time, and this flexibility may reduce competition among ancient herbivores. 
    more » « less
  4. During International Ocean Discovery Program Expeditions 390C, 395E, 390, and 393 (the South Atlantic Transect), seven sites were drilled on the western flank of the southern Mid-Atlantic Ridge. Among these sites, Sites U1557 and U1558 recovered Eocene and Oligocene sediments. Such sediments will allow a better understanding of how ocean ecosystems, as well as ocean circulation and chemistry, responded to the paleoceanographic and paleoclimatic changes leading to the Eocene–Oligocene transition. In this study, we present early Eocene through early Oligocene carbon and oxygen stable isotope data (δ13C and δ18O) of bulk carbonates from sediment samples collected in Holes U1557B, U1558A, and U1558F. The data show that the western South Atlantic, a relatively understudied region for the Eocene, recorded some global geochemical features, such as the relatively low δ13C and δ18O values typical of hyperthermal events characterizing the onset of the Early Eocene Climatic Optimum and the rapid shift toward high δ18O and δ13C values at the Eocene/Oligocene boundary. 
    more » « less
  5. We examine age of weaning and childhood diet at a Middle Period site in central California, CA-SOL-11, near Suisun Marsh. Stable isotope analyses of serial samples of permanent first molars record information about the diet of an individual when they were between 0 and 9.5 years of age. Our results show that females were breastfed, on average, slightly longer than males at the site. Because breastfeeding represents a significant time and caloric investment by a mother, this suggests greater parental investment in female offspring relative to males. After weaning, young males gained a greater proportion of protein from higher trophic levels and with greater contribution from brackish or marine environments, which we interpret as a higher quality diet. This suggests either preferential provisioning by parents in males after weaning, or evidence of gendered labor practices and diets beginning in early childhood. We also incorporate new analyses of the amelogenin proteins preserved in enamel, AMELX_HUMAN and AMELY_HUMAN, to estimate the sex of one individual previously identified as male based on osteological markers and two individuals that could not be assigned sex based on osteology 
    more » « less