Abstract A coronal hole formed as a result of a quiet-Sun filament eruption close to the solar disk center on 2014 June 25. We studied this formation using images from the Atmospheric Imaging Assembly (AIA), magnetograms from the Helioseismic and Magnetic Imager, and a differential emission measure analysis derived from the AIA images. The coronal hole developed in three stages: (1) formation, (2) migration, and (3) stabilization. In the formation phase, the emission measure (EM) and temperature started to decrease 6 hr before the filament erupted. Then, the filament erupted and a large coronal dimming formed over the following 3 hr. Subsequently, in a phase lasting 15.5 hr, the coronal dimming migrated by ≈150″from its formation site to a location where potential field source surface extrapolations indicate the presence of open magnetic field lines, marking the transition into a coronal hole. During this migration, the coronal hole drifted across quasi-stationary magnetic elements in the photosphere, implying the occurrence of magnetic interchange reconnection at the boundaries of the coronal hole. In the stabilization phase, the magnetic properties and area of the coronal hole became constant. The EM of the coronal hole decreased, which we interpret as a reduction in plasma density due to the onset of plasma outflow into interplanetary space. As the coronal hole rotated toward the solar limb, it merged with a nearby preexisting coronal hole. At the next solar rotation, the coronal hole was still apparent, indicating a lifetime of >1 solar rotation.
more »
« less
On the Origin of the Sudden Heliospheric Open Magnetic Flux Enhancement During the 2014 Pole Reversal
Abstract Coronal holes are recognized as the primary sources of heliospheric open magnetic flux (OMF). However, a noticeable gap exists between in situ measured OMF and that derived from remote-sensing observations of the Sun. In this study, we investigate the OMF evolution and its connection to solar structures throughout 2014, with special emphasis on the period from September to October, where a sudden and significant OMF increase was reported. By deriving the OMF evolution at 1 au, modeling it at the source surface, and analyzing solar photospheric data, we provide a comprehensive analysis of the observed phenomenon. First, we establish a strong correlation between the OMF increase and the solar magnetic field derived from a potential-field source-surface model (ccPearson= 0.94). Moreover, we find a good correlation between the OMF and the open flux derived from solar coronal holes (ccPearson= 0.88), although the coronal holes only contain 14%–32% of the Sun’s total open flux. However, we note that while the OMF evolution correlates with coronal hole open flux, there is no correlation with the coronal hole area evolution (ccPearson= 0.0). The temporal increase in OMF correlates with the vanishing remnant magnetic field at the southern pole, caused by poleward flux circulations from the decay of numerous active regions months earlier. Additionally, our analysis suggests a potential link between the OMF enhancement and the concurrent emergence of the largest active region in solar cycle 24. In conclusion, our study provides insights into the strong increase in OMF observed during 2014 September–October.
more »
« less
- Award ID(s):
- 1854790
- PAR ID:
- 10523488
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 965
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 151
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A potential field solution is widely used to extrapolate the coronal magnetic field above the Sun’s surface to a certain height. This model applies the current-free approximation and assumes that the magnetic field is entirely radial beyond the source surface height, which is defined as the radial distance from the center of the Sun. Even though the source surface is commonly specified at 2.5Rs(solar radii), previous studies have suggested that this value is not optimal in all cases. In this study, we propose a novel approach to specify the source surface height by comparing the areas of the open magnetic field regions from the potential field solution with predictions made by a magnetohydrodynamic model, in our case the Alfvén Wave Solar atmosphere Model. We find that the adjusted source surface height is significantly less than 2.5Rsnear solar minimum and slightly larger than 2.5Rsnear solar maximum. We also report that the adjusted source surface height can provide a better open flux agreement with the observations near the solar minimum, while the comparison near the solar maximum is slightly worse.more » « less
-
Abstract Many scientists use coronal hole (CH) detections to infer open magnetic flux. Detection techniques differ in the areas that they assign as open, and may obtain different values for the open magnetic flux. We characterize the uncertainties of these methods, by applying six different detection methods to deduce the area and open flux of a near-disk center CH observed on 2010 September 19, and applying a single method to five different EUV filtergrams for this CH. Open flux was calculated using five different magnetic maps. The standard deviation (interpreted as the uncertainty) in the open flux estimate for this CH ≈ 26%. However, including the variability of different magnetic data sources, this uncertainty almost doubles to 45%. We use two of the methods to characterize the area and open flux for all CHs in this time period. We find that the open flux is greatly underestimated compared to values inferred from in situ measurements (by 2.2–4 times). We also test our detection techniques on simulated emission images from a thermodynamic MHD model of the solar corona. We find that the methods overestimate the area and open flux in the simulated CH, but the average error in the flux is only about 7%. The full-Sun detections on the simulated corona underestimate the model open flux, but by factors well below what is needed to account for the missing flux in the observations. Under-detection of open flux in coronal holes likely contributes to the recognized deficit in solar open flux, but is unlikely to resolve it.more » « less
-
Context.Coronal mass ejections (CMEs) are eruptions of plasma from the Sun that travel through interplanetary space and may encounter Earth. CMEs often enclose a magnetic flux rope (MFR), the orientation of which largely determines the CMEs’ geoeffectiveness. Current operational CME models do not model MFRs, but a number of research ones do, including the Open Solar Physics Rapid Ensemble Information (OSPREI) model. Aims.We report the sensitivity of OSPREI to a range of user-selected photospheric and coronal conditions. Methods.We modeled four separate CMEs observed in situ by Parker Solar Probe (PSP). We varied the input photospheric conditions using four input magnetograms (HMI Synchronic, HMI Synoptic, GONG Synoptic Zero-Point Corrected, and GONG ADAPT). To vary the coronal field reconstruction, we employed the Potential Field Source Surface (PFSS) model and varied its source-surface height in the range 1.5–3.0R⊙with 0.1R⊙increments. Results.We find that both the input magnetogram and PFSS source surface often affect the evolution of the CME as it propagates through the Sun’s corona into interplanetary space, and therefore the accuracy of the MFR prediction compared to in situ data at PSP. There is no obvious best combination of input magnetogram and PFSS source surface height. Conclusions.The OSPREI model is moderately sensitive to the input photospheric and coronal conditions. Based on where the source region of the CME is located on the Sun, there may be best practices when selecting an input magnetogram to use.more » « less
-
Abstract Potential field source surface (PFSS) models are widely used to simulate coronal magnetic fields. PFSS models use the observed photospheric magnetic field as the inner boundary condition and assume a perfectly radial field beyond a “source surface” (Rss). At present, total solar eclipse (TSE) white-light images are the only data that delineate the coronal magnetic field from the photosphere out to several solar radii (R⊙). We utilize a complete solar cycle span of these images between 2008 and 2020 as a benchmark to assess the reliability of PFSS models. For a quantitative assessment, we apply the Rolling Hough Transform to the eclipse data and corresponding PFFS models to measure the difference, Δθ, between the data and model magnetic field lines throughout the corona. We find that the average Δθ, 〈Δθ〉, can be minimized for a given choice ofRssdepending on the phase within a solar cycle. In particular,Rss≈ 1.3R⊙is found to be optimal for solar maximum, whileRss≈ 3R⊙yields a better match at solar minimum. Regardless, large (〈Δθ〉 > 10°) discrepancies between TSE data and PFSS-generated coronal field lines remain regardless of the choice of source surface. However, implementation of solar-cycle-dependentRssoptimal values does yield more reliable PFSS-generated coronal field lines for use in models and for tracing in situ measurements back to their sources at the Sun.more » « less
An official website of the United States government

