Electrospun polymer fibers can be used as templates for the stabilization of metallic nanostructures, but metallic species and polymer macromolecules generally exhibit weak interfacial adhesion. We have investigated the adhesion of model copper nanocubes on chemically treated aligned electrospun polyacrylonitrile (PAN) fibers based on the introduction of interfacial shear strains through mechanical deformation. The composite structures were subjected to distinct macroscopic tensile strain levels of 7%, 11%, and 14%. The fibers exhibited peculiar deformation behaviors that underscored their disparate strain transfer mechanisms depending on fiber size; nanofibers exhibited multiple necking phenomena, while microfiber deformation proceeded through localized dilatation that resulted in craze (and microcrack) formation. The copper nanocubes exhibited strong adhesion on both fibrous structures at all strain levels tested. Raman spectroscopy suggests chemisorption as the main adhesion mechanism. The interfacial adhesion energy of Cu on these treated PAN nanofibers was estimated using the Gibbs–Wulff–Kaischew shape theory giving a first order approximation of about 1 J/m2. A lower bound for the system’s adhesion strength, based on limited measurements of interfacial separation between PAN and Cu using mechanically applied strain, is 0.48 J/m2.
more »
« less
Investigating the Role of Plasmonics in Electrospun Fibers by Combined Photothermal Heterodyne Imaging and Raman Measurements
The addition of plasmonic nanoparticles into electrospun polymer fibers can have significant impact on their properties relevant to applications in sensing, catalyst, and energy conversion. A Raman spectrometer incorporated into a photothermal heterodyne imaging system was used to study the hot electron transfer mechanism generated through excitation of a localized surface plasmon resonance (LSPR) of gold and silver nanoparticles in polyacrylonitrile films and nanofibers. The ratio of anion nitrile radicals to neutral nitriles of polyacrylonitrile, provides a measure of the ionization capabilities of the nanoparticles, was found to follow a Boltzmann distribution, indicating that the LSPR mediated hot electron transfer mechanism is dependent on temperature. Silicon nanoparticles were used as a control for temperature and showed that heating itself, using 405 nm and 532 nm pump lasers, was not sufficient to ionize polyacrylonitriles, even at relatively high temperatures. The results provide insight into the roles of heating and electron transfer arising from nanoparticles additives in electrospun polymer fibers and other materials.
more »
« less
- Award ID(s):
- 2103725
- PAR ID:
- 10523519
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry C
- Volume:
- 128
- Issue:
- 25
- ISSN:
- 1932-7447
- Page Range / eLocation ID:
- 10347 to 10356
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ∼3-nm-diameter colloidal gold (Au c ) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Au c in PEG (PEG+Au c ) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Au c ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Au c versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ∼14 % when illuminated with green light. Au c enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials.more » « less
-
Nanocomposite electrospun fibers were fabricated from poly(lactic) acid (PLA) and needle-like hydroxyapatite nanoparticles made from eggshells. The X-ray diffraction spectrum and the scanning electron micrograph showed that the hydroxyapatite particles are highly crystalline and are needle-liked in shape with diameters between 10 and 20 nm and lengths ranging from 100 to 200 nm. The microstructural, thermal, and mechanical properties of the electrospun fibers were characterized using scanning electron microscope (SEM), thermogravimetric analysis (TGA), dynamic scanning calorimetry (DSC), and tensile testing techniques. The SEM study showed that both pristine and PLA/EnHA fibers surfaces exhibited numerous pores and rough edges suitable for cell attachment. The presence of the rod-liked EnHA particles was found to increase thermal and mechanical properties of PLA fibers relative to pristine PLA fibers. The confocal optical images showed that osteoblast cells were found to attach on dense pristine PLA and PLA/HA-10 wt% fibers after 48 hours of incubation. The stained confocal optical images indicated the secretion of cytoplasmic extension linking adjoining nuclei after 96 hours of incubation. These findings showed that eggshell based nanohydroxyapatite and poly(lactic acid) fibers could be potential scaffold for tissue regeneration.more » « less
-
This paper reports the molecular organization and mechanical properties of electrospun, post-drawn polyacrylonitrile (PAN) nanofibers. Without post-drawing, the polymer chain was kinked and oriented in hexagonal crystalline structures. Immediate post-drawing in the semi-solid state disrupted the crystal structures and chain kink at maximum draw ratio. Structural re-orientation at maximum draw resulted in a 500% increase in Young's modulus and a 100% increase in ultimate tensile strength. By applying post-drawing to electrospinning it may be possible to obtain PAN fibers and PAN-derived carbon fibers with enhanced mechanical properties compared to available fabrication technologies.more » « less
-
Abstract Liquid‐like nanoparticle organic hybrid materials (NOHMs) consisting of a silica core with ionically grafted branched polyethyleneimine chains (referred to as NIPEI) are encapsulated within submicron‐scale polyacrylonitrile (PAN)/polymer‐derived‐ceramic electrospun fibers. The addition of a room‐temperature curable, liquid‐phase organopolysilazane (OPSZ) ceramic precursor to the PAN/NOHM solution enhances the internal dispersion of NOHMs and forms a thin ceramic sheath layer on the fiber exterior, shielding the hydrophilic NIPEI to produce near‐superhydrophobic non‐woven fiber mats with contact angles exceeding 140°. 60:40 loadings of NOHMs to PAN/OPSZ can be reliably achieved with low OPSZ percentages required, and up to 4:1 NOHM:polymer loadings are possible before losing hydrophobicity. These fibers demonstrate up to ≈2 mmol CO2g−1fiber capture capacities in a pure CO2atmosphere through the nonwoven fibrous networks and the permeability of the OPSZ shell. The hybrid fibers additionally show enhanced capture kinetics under pure CO2and 400 ppm CO2conditions, indicating their promising application as a direct air capture platform.more » « less
An official website of the United States government

