skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupled Thermal Solidification Process Simulation of Sapphire Growth
Thermal distribution during the sapphire growth process determines to a great extent the thermal stresses and dislocation density in sapphire. In this work, thermal and defect simulations of sapphire growth in a simplified single-boule furnace are presented. The heat transfer in the furnace is modeled via ANSYS Fluent® by considering conduction, convection and radiation effects. A dislocation density-based crystal plasticity model is applied for the numerical simulation of dislocation evolution during the crystal growth of sapphire. The physical models are validated by using a temporal series of measurements in the real furnace geometry, which capture the crystal–melt interface position during the technological growth process. The growth rate and the shape of the crystal growth front are analyzed for different side and top heater powers which result in different thermal distributions in the furnace. It is found that the cooling flux at the crucible bottom wall determines to a great extent the growth profile in the first half of the growth stage. Only toward the end of the growth stage, different top and side power distributions induce different growth front shapes. The effect of the convexity of the growth surface on the generation of dislocation defects is investigated by the crystal plasticity model. The results of simulations show that the convexity of the growth surface has a significant effect on the generation of dislocations.  more » « less
Award ID(s):
2316628
PAR ID:
10523547
Author(s) / Creator(s):
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Integrating materials and manufacturing innovation
ISSN:
2193-9772
Subject(s) / Keyword(s):
Sapphire growth process · Heat transfer · CFD simulation · Crystal plasticity model · Dislocation density
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A physically-informed continuum crystal plasticity model is presented to elucidate deformation mechanisms, dislocation evolution and the non-Schmid effect in body-centered-cubic (bcc) tantalum widely used as a key structural material for mechanical and thermal extremes. We show the unified structural modeling framework informed by mesoscopic dislocation dynamics simulations is capable of capturing salient features of the large inelastic behavior of tantalum at quasi-static (10−3 s−1) to extreme strain rates (5000 s−1) and at low (77 K) to high temperatures (873 K) at both single- and polycrystal levels. We also present predictive capabilities of the model for microstructural evolution in the material. To this end, we investigate the effects of dislocation interactions on slip activities, instability and the non-Schmid behavior at the single crystal level. Furthermore, ex situ measurements on crystallographic texture evolution and dislocation density growth are carried out for polycrystal tantalum specimens at increasing strains. Numerical simulation results also support that the modeling framework is capable of capturing the main features of the polycrystal behavior over a wide range of strains, strain rates and temperatures. The theoretical, experimental and numerical results at both single- and polycrystal levels provide critical insight into the underlying physical pictures for micro- and macroscopic responses and their relations in this important class of refractory bcc materials undergoing large inelastic deformations. 
    more » « less
  2. A novel dislocation-density-based crystal plasticity model for nanocrystalline face-centered cubic metals is developed based on the thermally-activated mechanism of dislocations depinning from grain boundaries. Dislocations nucleated from grain boundary dislocation sources are assumed to be the primary carriers of plasticity in the nanocrystals. The evolution of the dislocation density thereby involves a competition between the nucleation of dislocations from grain boundary defect structures, such as ledges, and the absorption of dislocations into the grain boundary via diffusion processes. This model facilitates the simulation of plastic deformation in nanocrystalline metals, with consideration of the initial microstructure resulting from a particular processing method, to be computed as a direct result of dislocation-mediated plasticity only. The exclusion of grain boundary-mediated plasticity mechanisms in the formulation of the crystal plasticity model allows for the exploration of the fundamental role dislocations play in nanocrystalline plasticity. The combined effect of average grain size, grain size distribution shape, and initial dislocation density on the mechanical performance and strain-rate sensitivity are explored with the model. Further, the influence of the grain boundary diffusivity on post-yielding strain-hardening behavior is investigated to discern the impact that the choice of processing route has on the resulting deformation response of the material. 
    more » « less
  3. The equations of dislocation transport at finite crystal deformation were developed, with a special emphasis on a vector density representation of dislocations. A companion thermodynamic analysis yielded a generalized expression for the driving force of dislocations that depend on Mandel (Cauchy) stress in the reference (spatial) configurations and the contribution of the dislocation core energy to the free energy of the crystal. Our formulation relied on several dislocation density tensor measures linked to the incompatibility of the plastic distortion in the crystal. While previous works develop such tensors starting from the multiplicative decomposition of the deformation gradient, we developed the tensor measures of the dislocation density and the dislocation flux from the additive decomposition of the displacement gradient and the crystal velocity fields. The two-point dislocation density measures defined by the referential curl of the plastic distortion and the spatial curl of the inverse elastic distortion and the associate dislocation currents were found to be more useful in deriving the referential and spatial forms of the transport equations for the vector density of dislocations. A few test problems showing the effect of finite deformation on the static dislocation fields are presented, with a particular attention to lattice rotation. The framework developed provides the theoretical basis for investigating crystal plasticity and dislocation patterning at the mesoscale, and it bears the potential for realistic comparison with experiments upon numerical solution. 
    more » « less
  4. Recent developments in generalized continuum modeling methods ranging from coarse-grained atomistics to micromorphic theory offer potential to make more intimate physical contact with dislocation field problems framed at length scales on the order of microns. We explore a range of discrete dynamical and continuum mechanics approaches to crystal plasticity that are relevant to modeling behavior of populations of dislocations. Predictive atomistic and coarse-grained atomistic models are limited in terms of length and time scales that can be accessed; examples of the latter are discussed in terms of interactions of multiple dislocations in heterogeneous systems. Generalized continuum models alleviate restrictions to a significant extent in modeling larger scales of dislocation configurations and reactions, and are useful to consider effects of dislocation configuration on strength at characteristic length scales of sub-micron and above; these models require a combination of bottomup models and top-down experimental information to inform parameters and model form. The concurrent atomistic-continuum (CAC) method is extended to model complex multicomponent alloy systems using an average atom approach. Examples of CAC are presented, along with potential to assist in informing parameters of a recently developed micropolar crystal plasticity model based on a set of sub-micron dislocation field problems. Prospects for further developments are discussed. 
    more » « less
  5. The generation of colloidal solutions of chemically clean nanoparticles through pulsed laser ablation in liquids (PLAL) has evolved into a thriving research field that impacts industrial applications. The complexity and multiscale nature of PLAL make it difficult to untangle the various processes involved in the generation of nanoparticles and establish the dependence of nanoparticle yield and size distribution on the irradiation parameters. Large-scale atomistic simulations have yielded important insights into the fundamental mechanisms of ultrashort (femtoseconds to tens of picoseconds) PLAL and provided a plausible explanation of the origin of the experimentally observed bimodal nanoparticle size distributions. In this paper, we extend the atomistic simulations to short (hundreds of picoseconds to nanoseconds) laser pulses and focus our attention on the effect of the pulse duration on the mechanisms responsible for the generation of nanoparticles at the initial dynamic stage of laser ablation. Three distinct nanoparticle generation mechanisms operating at different stages of the ablation process and in different parts of the emerging cavitation bubble are identified in the simulations. These mechanisms are (1) the formation of a thin transient metal layer at the interface between the ablation plume and water environment followed by its decomposition into large molten nanoparticles, (2) the nucleation, growth, and rapid cooling/solidification of small nanoparticles at the very front of the emerging cavitation bubble, above the transient interfacial metal layer, and (3) the spinodal decomposition of a part of the ablation plume located below the transient interfacial layer, leading to the formation of a large population of nanoparticles growing in a high-temperature environment through inter-particle collisions and coalescence. The coexistence of the three distinct mechanisms of the nanoparticle formation at the initial stage of the ablation process can be related to the broad nanoparticle size distributions commonly observed in nanosecond PLAL experiments. The strong dependence of the nanoparticle cooling and solidification rates on the location within the low-density metal–water mixing region has important implications for the long-term evolution of the nanoparticle size distribution, as well as for the ability to quench the nanoparticle growth or dope them by adding surface-active agents or doping elements to the liquid environment. 
    more » « less