skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Radiolytically reworked Archean organic matter in a habitable deep ancient high-temperature brine
Abstract Investigations of abiotic and biotic contributions to dissolved organic carbon (DOC) are required to constrain microbial habitability in continental subsurface fluids. Here we investigate a large (101–283 mg C/L) DOC pool in an ancient (>1Ga), high temperature (45–55 °C), low biomass (102−104cells/mL), and deep (3.2 km) brine from an uranium-enriched South African gold mine. Excitation-emission matrices (EEMs), negative electrospray ionization (–ESI) 21 tesla Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and amino acid analyses suggest the brine DOC is primarily radiolytically oxidized kerogen-rich shales or reefs, methane and ethane, with trace amounts of C3–C6hydrocarbons and organic sulfides. δ2H and δ13C of C1–C3hydrocarbons are consistent with abiotic origins. These findings suggest water-rock processes control redox and C cycling, helping support a meagre, slow biosphere over geologic time. A radiolytic-driven, habitable brine may signal similar settings are good targets in the search for life beyond Earth.  more » « less
Award ID(s):
2026858 2026853
PAR ID:
10523579
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The thawing of ancient organic carbon stored in arctic permafrost soils, and its oxidation to carbon dioxide (CO2, a greenhouse gas), is predicted to amplify global warming. However, the extent to which organic carbon in thawing permafrost soils will be released as CO2is uncertain. A critical unknown is the extent to which dissolved organic carbon (DOC) from thawing permafrost soils is respired to CO2by microbes upon export of freshly thawed DOC to both dark bottom waters and sunlit surface waters. In this study, we quantified the radiocarbon age and13C composition of CO2produced by microbial respiration of DOC that was leached from permafrost soils and either kept in the dark or exposed to ultraviolet and visible wavelengths of light. We show that permafrost DOC most labile to microbial respiration was as old or older (ages 4,000–11,000 a BP) and more13C‐depleted than the bulk DOC in both dark and light‐exposed treatments, likely indicating respiration of old,13C‐depleted lignin and lipid fractions of the permafrost DOC pool. Light exposure either increased, decreased, or had no effect on the magnitude of microbial respiration of old permafrost DOC relative to respiration in the dark, depending on both the extent of DOC oxidation during exposure to light and the wavelength of light. Together, these findings suggest that photochemical changes affecting the lability of permafrost DOC during sunlight exposure are an important control on the magnitude of microbial respiration of permafrost DOC in arctic surface waters. 
    more » « less
  2. Abstract Deeply fractured rocks of meteorite impact craters are suggested as prime niches for subsurface microbial colonization. Methane can be a product of such microbial communities and seeps of methane from impact craters on Earth are of strong interest as they act as analogs for Mars. Previous studies report signs of ancient microbial methanogenesis in the Devonian Siljan meteorite impact structure in Sweden, but the proportion of microbial methane, metabolic pathways, and potential modern activity remain elusive. In this study, gas composition, hydrochemistry, oil organic geochemistry, and microbial community analyses are reported in 400 m deep fractures of the Siljan impact structure. The results showed a dominantly microbial origin for methane, which was supported by highly negative δ13CCH4and positive δ13CCO2values along with multiply substituted isotopologues (Δ13CH3D) that indicated disequilibrium fractionation due to microbial kinetic isotope effects. The presence of C2to C5hydrocarbons suggested a minor thermogenic input in the gas mix. Characterization of the microbial community via 16S rRNA gene amplicon sequencing and real-time PCR indicated a low abundance of several methanogenic archaeal populations, which is common for settings with active methanogenesis. Evidence of oil biodegradation suggested that secondary microbial hydrocarbon utilization was involved in the methanogenesis. Low sulfate and high alkalinity in the groundwaters also suggested a dominantly microbial methane formation driven by infiltration of freshwater that was coupled to sulfate reduction and secondary utilization of early mature thermogenic hydrocarbons. 
    more » « less
  3. Through biological activity, marine dissolved inorganic carbon (DIC) is transformed into different types of biogenic carbon available for export to the ocean interior, including particulate organic carbon (POC), dissolved organic carbon (DOC), and particulate inorganic carbon (PIC). Each biogenic carbon pool has a different export efficiency that impacts the vertical ocean carbon gradient and drives natural air–sea carbon dioxide gas (CO2) exchange. In the Southern Ocean (SO), which presently accounts for ~40% of the anthropogenic ocean carbon sink, it is unclear how the production of each biogenic carbon pool contributes to the contemporary air–sea CO2exchange. Based on 107 independent observations of the seasonal cycle from 63 biogeochemical profiling floats, we provide the basin-scale estimate of distinct biogenic carbon pool production. We find significant meridional variability with enhanced POC production in the subantarctic and polar Antarctic sectors and enhanced DOC production in the subtropical and sea-ice-dominated sectors. PIC production peaks between 47°S and 57°S near the “great calcite belt.” Relative to an abiotic SO, organic carbon production enhances CO2uptake by 2.80 ± 0.28 Pg C y1, while PIC production diminishes CO2uptake by 0.27 ± 0.21 Pg C y1. Without organic carbon production, the SO would be a CO2source to the atmosphere. Our findings emphasize the importance of DOC and PIC production, in addition to the well-recognized role of POC production, in shaping the influence of carbon export on air–sea CO2exchange. 
    more » « less
  4. Abstract Cyclotetrabenzil, a shape‐persistent macrocyclic octaketone, is found to undergo eightfold condensation with hydroxylamine hydrochloride to yield its octaoxime. Subsequent acetylation of this macrocyclic oxime afforded the corresponding octaoxime acetate. Single‐crystal X‐ray diffraction reveals that both new derivatives assemble into nanotubular structures. However, their packing differs: the oxime forms hydrogen‐bonded tubes that bundle via included dimethyl sulfoxide (DMSO) molecules, whereas the acetate—lacking hydrogen‐bond donors—forms more loosely packed tubes with molecules tilted ∼54.5° relative to the tube axis. Gas sorption studies (CO2, C2, and C3hydrocarbons) show that cyclotetrabenzil is nonporous, whereas the oxime and acetate exhibit modest microporosity with BET surface areas of ∼200 m2g−1. Both derivatives display preferential uptake of propyne over propene and propane, and the acetate also adsorbs more acetylene than ethylene or ethane. Nonetheless, these capacities and selectivities are suboptimal for dynamic separation of C2and C3hydrocarbons. This study illustrates how oxime functionalization can modulate macrocyclic assembly and gas uptake behavior, providing insights for the design of future porous organic macrocycles. 
    more » « less
  5. Abstract We present new data from the debris-rich basal ice layers of the NEEM ice core (NW Greenland). Using mineralogical observations, SEM imagery, geochemical data from silicates (meteoric10Be, εNd,87Sr/86Sr) and organic material (C/N, δ13C), we characterize the source material, succession of previous glaciations and deglaciations and the paleoecological conditions during ice-free episodes. Meteoric10Be data and grain features indicate that the ice sheet interacted with paleosols and eroded fresh bedrock, leading to mixing in these debris-rich ice layers. Our analysis also identifies four successive stages in NW Greenland: (1) initial preglacial conditions, (2) glacial advance 1, (3) glacial retreat and interglacial conditions and (4) glacial advance 2 (current ice-sheet development). C/N and δ13C data suggest that deglacial environments favored the development of tundra and taiga ecosystems. These two successive glacial fluctuations observed at NEEM are consistent with those identified from the Camp Century core basal sediments over the last 3 Ma. Further inland, GRIP and GISP2 summit sites have remained glaciated more continuously than the western margin, with less intense ice-substratum interactions than those observed at NEEM. 
    more » « less