Abstract We show for CES demands with heterogeneous productivities that profit, revenue and output distributions lie in the same closed power family as the productivity distribution (e.g., the ‘Pareto circle’). The price distribution lies in the inverse power family. Equilibrium distribution shapes are linked by linear relations between their density elasticities. Introducing product quality decouples the CES circle, and reconciles Pareto price and Pareto sales revenue distributions. We use discrete choice underpinnings to find variable mark-ups for a more flexible demand formulation bridging CES to logit and beyond. For logit demand, exponential (resp. normal) quality-cost distributions generate Pareto (log-normal) economic size distributions.
more »
« less
Bayesian Non-Parametric Inference for Multivariate Peaks-over-Threshold Models
We consider a constructive definition of the multivariate Pareto that factorizes the random vector into a radial component and an independent angular component. The former follows a univariate Pareto distribution, and the latter is defined on the surface of the positive orthant of the infinity norm unit hypercube. We propose a method for inferring the distribution of the angular component by identifying its support as the limit of the positive orthant of the unit p-norm spheres and introduce a projected gamma family of distributions defined through the normalization of a vector of independent random gammas to the space. This serves to construct a flexible family of distributions obtained as a Dirichlet process mixture of projected gammas. For model assessment, we discuss scoring methods appropriate to distributions on the unit hypercube. In particular, working with the energy score criterion, we develop a kernel metric that produces a proper scoring rule and presents a simulation study to compare different modeling choices using the proposed metric. Using our approach, we describe the dependence structure of extreme values in the integrated vapor transport (IVT), data describing the flow of atmospheric moisture along the coast of California. We find clear but heterogeneous geographical dependence.
more »
« less
- PAR ID:
- 10523601
- Publisher / Repository:
- Entropy - MDPI
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 335
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We consider a collection of Markov chains that model the evolution of multitype biological populations. The state space of the chains is the positive orthant, and the boundary of the orthant is the absorbing state for the Markov chain and represents the extinction states of different population types. We are interested in the long-term behavior of the Markov chain away from extinction, under a small noise scaling. Under this scaling, the trajectory of the Markov process over any compact interval converges in distribution to the solution of an ordinary differential equation (ODE) evolving in the positive orthant. We study the asymptotic behavior of the quasi-stationary distributions (QSD) in this scaling regime. Our main result shows that, under conditions, the limit points of the QSD are supported on the union of interior attractors of the flow determined by the ODE. We also give lower bounds on expected extinction times which scale exponentially with the system size. Results of this type when the deterministic dynamical system obtained under the scaling limit is given by a discrete-time evolution equation and the dynamics are essentially in a compact space (namely, the one-step map is a bounded function) have been studied by Faure and Schreiber (2014). Our results extend these to a setting of an unbounded state space and continuous-time dynamics. The proofs rely on uniform large deviation results for small noise stochastic dynamical systems and methods from the theory of continuous-time dynamical systems. In general, QSD for Markov chains with absorbing states and unbounded state spaces may not exist. We study one basic family of binomial-Poisson models in the positive orthant where one can use Lyapunov function methods to establish existence of QSD and also to argue the tightness of the QSD of the scaled sequence of Markov chains. The results from the first part are then used to characterize the support of limit points of this sequence of QSD.more » « less
-
We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary, multivariate long-range dependent (LRD) Gaussian time series. In a time series graph, each component of the vector series is represented by a distinct node, and associations between components are represented by edges between the corresponding nodes. In a recent work on graphical modeling of short-range dependent (SRD) Gaussian time series, the problem was cast as one of multi-attribute graph estimation for random vectors where a vector is associated with each node of the graph. At each node, the associated random vector consists of a time series component and its delayed copies. A theoretical analysis based on short-range dependence has been given in Tugnait (2022 ICASSP). In this paper we analyze this approach for LRD Gaussian time series and provide consistency results regarding convergence in the Frobenius norm of the inverse covariance matrix associated with the multi-attribute graph.more » « less
-
Abstract For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as , with and being the potential outcomes of unit under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on which are identifiable parameters based on the observed data. Agresti and Kateri focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.more » « less
-
A source provides status updates to monitors through a network with state defined by a continuous-time finite Markov chain. An age of information (AoI) metric is used to characterize timeliness by the vector of ages tracked by the monitors. Based on a stochastic hybrid systems (SHS) approach, first order linear differential equations are derived for the temporal evolution of both the moments and the moment generating function (MGF) of the age vector components. It is shown that the existence of a non-negative fixed point for the first moment is sufficient to guarantee convergence of all higher order moments as well as a region of convergence for the stationary MGF vector of the age. The stationary MGF vector is then found for the age on a line network of preemptive memoryless servers. From this MGF, it is found that the age at a node is identical in distribution to the sum of independent exponential service times. This observation is then generalized to linear status sampling networks in which each node receives samples of the update process at each preceding node according to a renewal point process. For each node in the line, the age is shown to be identical in distribution to a sum of independent renewal process age random variables.more » « less
An official website of the United States government

