skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 1, 2025

Title: Single‐ and Double‐Layer Embedded Metal Meshes for Flexible, Highly Transparent Electromagnetic Interference Shielding
Abstract

Simulation and experimental studies are carried out on single‐layer and double‐layer embedded metal meshes (SLEMM and DLEMM) to assess their performance as transparent electromagnetic interference (EMI) shielding. The structures consist of silver meshes embedded in polyethylene terephthalate (PET). As a transparent electrode, SLEMMs exhibit a transparency of 82.7% and a sheet resistance of 0.61 Ωsq−1as well as 91.0% and 1.49 Ωsq−1. This performance corresponds to figures of merit of 3101 and 2620, respectively. The SLEMMs achieve 48.0 dB EMI shielding efficiency (SE) in the frequency range of 8–18 GHz (X‐ and Ku‐bands) with 91% visible transmission and 56.2 dB EMI SE with 82.7% visible transmission. Samples exhibit stable performance after 1000 bending cycles with a radius of curvature of 4 mm and 60 tape test cycles. DLEMMs consist of fabricating SLEMM on opposite sides of the substrate where the distance can be varied using a spacer. Simulations are performed to investigate how varying spacer distance between two layers of metal meshes influences the EMI SE. DLEMMs are fabricated and achieved an EMI SE of 77.7 dB with 81.7% visible transmission. SLEMMs and DLEMMs may have a wide variety of applications in aerospace, medical, and military applications.

 
more » « less
Award ID(s):
2052662
PAR ID:
10523871
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
9
Issue:
10
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An efficient approach to obtain high shielding effectiveness (SE) in transparent shielding in an optical window field is proposed and demonstrated by fabricating an embedded double-layer metallic mesh (DLMM) comprised of randomly structured Ni meshes on both sides of a flexible substrate, employing a facile and low-cost double-sided nanoimprinting method. The unique nonperiodic random structure contributes to uniform diffraction and eliminates the Moiré fringe generated by double-layer periodic meshes, ensuring high imaging quality for optical applications. The designed DLMM films simultaneously achieve strong shielding in the X-band and high transmittance in the visible spectrum, demonstrating a high transmittance of 88.7% at the 550-nm wavelength and a SE of 46.9 dB at a frequency of 8.2 GHz. An ultra-high SE of 80 dB is achieved at 64.2% transmittance, which reveals the highest reported SE over a metallic mesh for transparent shielding, indicating the high potential for this transparent electromagnetic interference shielding material for practical optical applications.

     
    more » « less
  2. Transparent electromagnetic interference (EMI) shielding is needed in many optoelectronic applications to protect electronic devices from surrounding radiation while allowing for high visible light transmission. However, very high transmission (over 92.5%), high EMI shielding efficiency (over 30 dB) structures have yet to be achieved in the literature. Bayesian optimization is used to optimize different nanophotonic structures for high EMI shielding efficiency (SE) and high visible light transmission (T¯<#comment/>vis). Below 90% average visible light transmission, sandwich structures consisting of high index dielectric/silver/high index dielectric films are determined to be optimal, where they are able to achieve 43.1 dB SE and 90.0%T¯<#comment/>vis. The high index of refraction dielectric layers reduce absorption losses in the silver and can be engineered to provide for antireflection through destructive interference. However, for optimal EMI shielding withT¯<#comment/>visabove 90%, the reflection losses at the air/dielectric interfaces need to be further reduced. Optimized double sided nanocone sandwich structures are determined to be best where they can achieve 41.2 dB SE and 90.8%T¯<#comment/>visas well as 35.6 dB SE and 95.1%T¯<#comment/>vis. K-means clustering is utilized to show the performance of characteristic near-Pareto optimal structures. Double sided nanocone structures are shown to exhibit omnidirectional visible transmission withSE = 35.6 dB and over 85%T¯<#comment/>visat incidence angles of 70∘<#comment/>.

     
    more » « less
  3. Abstract

    MXene and graphene cryogels have demonstrated excellent electromagnetic interference (EMI) shielding effectiveness due to their exceptional electrical conductivity, low density, and ability to dissipate electromagnetic waves through numerous internal interfaces. However, their synthesis demands costly reduction techniques and/or pre‐processing methods such as freeze‐casting to achieve high EMI shielding and mechanical performance. Furthermore, limited research has been conducted on optimizing the cryogel microstructures and porosity to enhance EMI shielding effectiveness while reducing materials consumption. Herein, a novel approach to produce ultra‐lightweight cryogels composed of Ti3C2Tx/graphene oxide (GO) displaying multiscale porosity is presented to enable high‐performance EMI shielding. This method uses controllable templating through the interfacial assembly of filamentous‐structured liquids that are readily converted into EMI cryogels. The obtained ultra‐flyweight cryogels (3–7 mg cm−3) exhibit outstanding specific EMI shielding effectiveness (33 000–50 000 dB cm2 g−1) while eliminating the need for chemical or thermal reduction. Furthermore, exceptional shielding is achieved when the Ti3C2Tx/GO cryogels are used as the backbone of conductive epoxy nanocomposites, yielding EMI shielding effectiveness of 31.7–51.4 dB at a low filler loading (0.3–0.7 wt%). Overall, a one‐of‐a‐kind EMI shielding system is introduced that is readily processed while affording scalability and performance.

     
    more » « less
  4. Abstract

    Lightweight, flexible, and electrically conductive thin films with high electromagnetic interference (EMI) shielding effectiveness are highly desirable for next‐generation portable and wearable electronic devices. Here, spin spray layer‐by‐layer (SSLbL) to rapidly assemble Ti3C2TxMXene‐carbon nanotube (CNT) composite films is shown and their potential for EMI shielding is demonstrated. The SSLbL technique allows strategic combinations of nanostructured materials and polymers providing a rich platform for developing hierarchical architectures with desirable cross‐functionalities including controllable transparency, thickness, and conductivity, as well as high stability and flexibility. These semi‐transparent LbL MXene‐CNT composite films show high conductivities up to 130 S cm−1and high specific shielding effectiveness up to 58 187 dB cm2g−1, which is attributed to both the excellent electrical conductivity of the conductive fillers (i.e., MXene and CNT) and the enhanced absorption with the LbL architecture of the films. Remarkably, these values are among the highest reported values for flexible and semi‐transparent composite thin films. This work could offer new solutions for next‐generation EMI shielding challenges.

     
    more » « less
  5. Abstract

    Polymer composites with electrically conductive fillers have been developed as mechanically flexible, easily processable electromagnetic interference (EMI) shielding materials. Although there are a few elastomeric composites with nanostructured silvers and carbon nanotubes showing moderate stretchability, their EMI shielding effectiveness (SE) deteriorates consistently with stretching. Here, a highly stretchable polymer composite embedded with a three‐dimensional (3D) liquid‐metal (LM) network exhibiting substantial increases of EMI SE when stretched is reported, which matches the EMI SE of metallic plates over an exceptionally broad frequency range of 2.65–40 GHz. The electrical conductivities achieved in the 3D LM composite are among the state‐of‐the‐art in stretchable conductors under large mechanical deformations. With skin‐like elastic compliance and toughness, the material provides a route to meet the demands for emerging soft and human‐friendly electronics.

     
    more » « less