skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rasch Analysis of the Quantum Mechanics Concept Assessment
Quantum mechanics is a subject rife with student conceptual difficulties. In order to study and devise better strategies for helping students overcome them, we need ways of assessing on a broad level how students are thinking. This is possible with the use of standardized, research-validated assessments like the Quantum Mechanics Concept Assessment (QMCA). These assessments are useful, but they lack rigorous population independence, and the question ordering cannot be rearranged without throwing into question the validity of the results. One way to overcome these two issues is to design the exam to be compatible with Rasch measurement theory which calibrates individual items and is capable of assessing item difficulty and person ability independently. In this paper, we present a Rasch analysis of the QMCA and discuss estimated item difficulties and person abilities, item and person fit to the Rasch model, and unidimensionality of the instrument. This work will lay the foundation for more robust and potentially generalizable assessments in the future.  more » « less
Award ID(s):
2143976
PAR ID:
10523879
Author(s) / Creator(s):
;
Publisher / Repository:
American Association of Physics Teachers
Date Published:
Page Range / eLocation ID:
175 to 180
Format(s):
Medium: X
Location:
Sacramento, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. [This paper is part of the Focused Collection in Investigating and Improving Quantum Education through Research.] Research-based multiple-choice questions implemented in class with peer instruction have been shown to be an effective tool for improving students’ engagement and learning outcomes. Moreover, multiple-choice questions that are carefully sequenced to build on each other can be particularly helpful for students to develop a systematic understanding of concepts pertaining to a theme. Here, we discuss the development, validation, and implementation of a multiple-choice question sequence (MQS) on the topic of quantum measurement in the context of wave functions in the infinite-dimensional Hilbert space. This MQS was developed using students’ common difficulties with quantum measurements as a guide and was implemented in a junior-/senior-level quantum mechanics course at a large research university in the U.S. We compare student performance on assessment tasks focusing on quantum measurement before and after the implementation of the MQS and discuss how different difficulties were reduced and how to further improve students’ conceptual understanding of quantum measurement in infinite-dimensional Hilbert space. Published by the American Physical Society2025 
    more » « less
  2. Smith, Richard (Ed.)
    Lengthy standardized assessments decrease instructional time while increasing concerns about student cognitive fatigue. This study presents a methodological approach for item reduction within a complex assessment setting using the Problem Solving Measure for Grade 6 (PSM6). Five item-reduction methods were utilized to reduce the number of items on the PSM6, and each shortened instrument was evaluated through validity evidence for test content, internal structure, and relationships to other variables. The two quantitative methods (Rasch model and point-biserial) resulted in the best psychometrically performing shortened assessments but were not representative of all content subdomains, while the three qualitative (content preservation) methods resulted in poor psychometrically performing assessments that retained all subdomains. Specifically, the ten-item Rasch and ten-item point-biserial shortened tests demonstrated the overall strongest validity evidence, but future research is needed to explore the psychometric performance of these versions in a new independent sample and the necessity for subdomain representation. Implications for the study provide a methodological framework for researchers to use and reduce the length of existing instruments while identifying how the various reduction strategies may sacrifice different information from the original instrument. Practitioners are encouraged to carefully examine to what extent their reduced instrument aligns with their pre-determined criteria. 
    more » « less
  3. Abstract We investigated the difficulties that physics students in upper-level undergraduate quantum mechanics and graduate students after quantum and statistical mechanics core courses have with the Fermi energy, the Fermi–Dirac distribution and total electronic energy of a free electron gas after they had learned relevant concepts in their respective courses. These difficulties were probed by administering written conceptual and quantitative questions to undergraduate students and asking some undergraduate and graduate students to answer those questions while thinking aloud in one-on-one individual interviews. We find that advanced students had many common difficulties with these concepts after traditional lecture-based instruction. Engaging with a sequence of clicker questions improved student performance, but there remains room for improvement in their understanding of these challenging concepts. 
    more » « less
  4. This research evaluates the impact of switching college engineering courses from in-person instruction to emergency remote learning among engineering students at a university in the Midwest. The study aimed to answer the question: What were the concerns and perceived challenges students faced when traditional in-person engineering courses suddenly transitioned to remote learning? The goal of this study is to uncover the challenges students were facing in engineering online courses and to understand students’ concerns. Our findings can help improve teaching instruction to provide students with previously unavailable educational assistance for online engineering courses. We collected online survey responses during weeks 8 and 9 of the academic semester, shortly after the COVID-19 shutdown and emergency transition to remote learning in Spring 2020. The survey included two open-ended questions which inquired about students’ feedback about moving the class online, and one two-item scale which assessed students’ confidence in online engineering learning. Data analysis for the open-ended questions was guided by the theoretical framework - Social Cognitive Career Theory [1] that explores how context, person factors and social cognitions contribute to career goals, interests and actions. A phenomenological approach [2] was conducted to understand the experience of these students. Open coding and axial coding [2] methods were used to create initial categories then themes related to students' concerns and challenges. Data from the two-item scale was evaluated using descriptive statistics: means, standard deviations, and ranges. Four main themes with separate sub-categories emerged from the student responses: 1) Instructor’s ability to teach course online (Instructional limitations, Seeking help, Increased Workload), 2) Student’s ability to learn online (Time Management, Lower engagement and motivation, Harder to absorb material, Hard to focus, Worry about performance), 3) Difficulties outside of class (Technology issues), and 4) No concerns. Students seemed more concerned about their ability to learn the material (48% of responses) than the instructor’s ability to teach the material (36% of responses). The instructional limitations or lack of instructional support (22% of responses) and time management (12% of responses) were among the major concerns in the sub-categories. The results from two-item scale indicated participants' s confidence in their ability to master their classroom knowledge was at an intermediate level via online instruction (6/10), and participants' confidence in the instructor's ability to teach knowledge in online classes is moderate to high (7/10). The results align with the open-ended question response in which students were somewhat more concerned about their ability to learn than the instructor’s ability to teach. The themes and analysis will be a valuable tool to help institutions and instructors improve student learning experiences. 
    more » « less
  5. Abstract Research-validated multiple-choice questions comprise an easy-to-implement instructional tool that serves to scaffold student learning and formatively assess students’ knowledge. We present findings from the implementation, in consecutive years, of a research-validated multiple-choice question sequence on measurement uncertainty as it applies to two-state quantum systems. This study was conducted in an advanced undergraduate quantum mechanics course, in online and in-person learning environments for consecutive years. Student learning was assessed after receiving traditional lecture-based instruction in relevant concepts, and their performance was compared with that of a similar assessment given after engaging with the multiple-choice question sequence. We analyze and discuss the similar and differing trends observed in the two modes of instruction. 
    more » « less