Background/Objective: Environmental exposures, such as heavy metals, can significantly affect physical activity, an important determinant of health. This study explores the effect of physical activity on combined exposure to cadmium, lead, and mercury (metals), using data from the 2013–2014 National Health and Nutrition Examination Survey (NHANES). Methods: Physical activity was measured with ActiGraph GT3X+ devices worn continuously for 7 days, while blood samples were analyzed for metal content using inductively coupled plasma mass spectrometry. Descriptive statistics and multivariable linear regression were used to assess the impact of multi-metal exposure on physical activity. Additionally, Bayesian Kernel Machine Regression (BKMR) was applied to explore nonlinear and interactive effects of metal exposures on physical activity. Using a Gaussian process with a radial basis function kernel, BKMR estimates posterior distributions via Markov Chain Monte Carlo (MCMC) sampling, allowing for robust evaluation of individual and combined exposure-response relationships. Posterior Inclusion Probabilities (PIPs) were calculated to quantify the relative importance of each metal. Results: The linear regression analysis revealed positive associations between cadmium and lead exposure and physical activity. BKMR analysis, particularly the PIP, identified lead as the most influential metal in predicting physical activity, followed by cadmium and mercury. These PIP values provide a probabilistic measure of each metal’s importance, offering deeper insights into their relative contributions to the overall exposure effect. The study also uncovered complex relationships between metal exposures and physical activity. In univariate BKMR exposure-response analysis, lead and cadmium generally showed positive associations with physical activity, while mercury exhibited a slightly negative relationship. Bivariate exposure-response analysis further illustrated how the impact of one metal could be influenced by the presence and levels of another, confirming the trends observed in univariate analyses while also demonstrating the complexity varying doses of two metals can have on either increased or decreased physical activity. Additionally, the overall exposure effect analysis across different quantiles revealed that higher levels of combined metal exposures were associated with increased physical activity, though there was greater uncertainty at higher exposure levels as the 95% credible intervals were wider. Conclusions: Overall, this study fills a critical gap by investigating the interactive and combined effects of multiple metals on physical activity. The findings underscore the necessity of using advanced methods such as BKMR to capture the complex dynamics of environmental exposures and their impact on human behavior and health outcomes.
more »
« less
Bayesian hierarchical modeling and analysis for actigraph data from wearable devices
The majority of Americans fail to achieve recommended levels of physical activity, which leads to numerous preventable health problems, such as diabetes, hypertension, and heart diseases. This has generated substantial interest in monitoring human activity to gear interventions toward environmental features that may relate to higher physical activity. Wearable devices, such as wrist-worn sensors that monitor gross motor activity (actigraph units) continuously record the activity levels of a subject, producing massive amounts of high-resolution measurements. Analyzing actigraph data needs to account for spatial and temporal information on trajectories or paths traversed by subjects wearing such devices. Inferential objectives include estimating a subject’s physical activity levels along a given trajectory, identifying trajectories that are more likely to produce higher levels of physical activity for a given subject, and predicting expected levels of physical activity in any proposed new trajectory for a given set of health attributes. Here, we devise a Bayesian hierarchical modeling framework for spatial-temporal actigraphy data to deliver fully model-based inference on trajectories while accounting for subject-level health attributes and spatial-temporal dependencies. We undertake a comprehensive analysis of an original dataset from the Physical Activity through Sustainable Transport Approaches in Los Angeles (PASTA-LA) study to ascertain spatial zones and trajectories exhibiting significantly higher levels of physical activity while accounting for various sources of heterogeneity.
more »
« less
- Award ID(s):
- 2113778
- PAR ID:
- 10523960
- Publisher / Repository:
- Institute of Mathematical Statistics
- Date Published:
- Journal Name:
- The Annals of Applied Statistics
- Volume:
- 17
- Issue:
- 4
- ISSN:
- 1932-6157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundSedentary behavior (SB) is a recognized risk factor for many chronic diseases. ActiGraph and activPAL are two commonly used wearable accelerometers in SB research. The former measures body movement and the latter measures body posture. The goal of the current study is to quantify the pattern and variation of movement (by ActiGraph activity counts) during activPAL-identified sitting events, and examine associations between patterns and health-related outcomes, such as systolic and diastolic blood pressure (SBP and DBP). MethodsThe current study included 314 overweight postmenopausal women, who were instructed to wear an activPAL (at thigh) and ActiGraph (at waist) simultaneously for 24 hours a day for a week under free-living conditions. ActiGraph and activPAL data were processed to obtain minute-level time-series outputs. Multilevel functional principal component analysis (MFPCA) was applied to minute-level ActiGraph activity counts within activPAL-identified sitting bouts to investigate variation in movement while sitting across subjects and days. The multilevel approach accounted for the nesting of days within subjects. ResultsAt least 90% of the overall variation of activity counts was explained by two subject-level principal components (PC) and six day-level PCs, hence dramatically reducing the dimensions from the original minute-level scale. The first subject-level PC captured patterns of fluctuation in movement during sitting, whereas the second subject-level PC delineated variation in movement during different lengths of sitting bouts: shorter (< 30 minutes), medium (30 -39 minutes) or longer (> 39 minute). The first subject-level PC scores showed positive association with DBP (standardized$$\hat{\beta }$$ : 2.041, standard error: 0.607, adjustedp= 0.007), which implied that lower activity counts (during sitting) were associated with higher DBP. ConclusionIn this work we implemented MFPCA to identify variation in movement patterns during sitting bouts, and showed that these patterns were associated with cardiovascular health. Unlike existing methods, MFPCA does not require pre-specified cut-points to define activity intensity, and thus offers a novel powerful statistical tool to elucidate variation in SB patterns and health. Trial registrationClinicalTrials.gov NCT03473145; Registered 22 March 2018;https://clinicaltrials.gov/ct2/show/NCT03473145; International Registered Report Identifier (IRRID): DERR1-10.2196/28684more » « less
-
Yamada, Yosuke (Ed.)The purpose of this study was to evaluate the reliability and validity of the raw accelerometry output from research-grade and consumer wearable devices compared to accelerations produced by a mechanical shaker table. Raw accelerometry data from a total of 40 devices (i.e., n = 10 ActiGraph wGT3X-BT, n = 10 Apple Watch Series 7, n = 10 Garmin Vivoactive 4S, and n = 10 Fitbit Sense) were compared to reference accelerations produced by an orbital shaker table at speeds ranging from 0.6 Hz (4.4 milligravity-mg) to 3.2 Hz (124.7mg). Two-way random effects absolute intraclass correlation coefficients (ICC) tested inter-device reliability. Pearson product moment, Lin’s concordance correlation coefficient (CCC), absolute error, mean bias, and equivalence testing were calculated to assess the validity between the raw estimates from the devices and the reference metric. Estimates from Apple, ActiGraph, Garmin, and Fitbit were reliable, with ICCs = 0.99, 0.97, 0.88, and 0.88, respectively. Estimates from ActiGraph, Apple, and Fitbit devices exhibited excellent concordance with the reference CCCs = 0.88, 0.83, and 0.85, respectively, while estimates from Garmin exhibited moderate concordance CCC = 0.59 based on the mean aggregation method. ActiGraph, Apple, and Fitbit produced similar absolute errors = 16.9mg, 21.6mg, and 22.0mg, respectively, while Garmin produced higher absolute error = 32.5mg compared to the reference. ActiGraph produced the lowest mean bias 0.0mg (95%CI = -40.0, 41.0). Equivalence testing revealed raw accelerometry data from all devices were not statistically significantly within the equivalence bounds of the shaker speed. Findings from this study provide evidence that raw accelerometry data from Apple, Garmin, and Fitbit devices can be used to reliably estimate movement; however, no estimates were statistically significantly equivalent to the reference. Future studies could explore device-agnostic and harmonization methods for estimating physical activity using the raw accelerometry signals from the consumer wearables studied herein.more » « less
-
null (Ed.)Pain and physical function are both essential indices of recovery in critically ill patients in the Intensive Care Units (ICU). Simultaneous monitoring of pain intensity and patient activity can be important for determining which analgesic interventions can optimize mobility and function, while minimizing opioid harm. Nonetheless, so far, our knowledge of the relation between pain and activity has been limited to manual and sporadic activity assessments. In recent years, wearable devices equipped with 3-axis accelerometers have been used in many domains to provide a continuous and automated measure of mobility and physical activity. In this study, we collected activity intensity data from 57 ICU patients, using the Actigraph GT3X device. We also collected relevant clinical information, including nurse assessments of pain intensity, recorded every 1-4 hours. Our results show the joint distribution and state transition of joint activity and pain states in critically ill patients.more » « less
-
null (Ed.)Moving objects equipped with location-positioning devices continuously generate a large amount of spatio-temporal trajectory data. An interesting finding over a trajectory stream is a group of objects that are travelling together for a certain period of time. We observe that existing studies on mining co-moving objects do not consider an important correlation between co-moving objects, which is the reoccurrence of the co-moving pattern. In this study, we propose the problem of finding recurrent co-moving patterns from streaming trajectories, enabling us to discover recent co-moving patterns that are repeated within a given time period. Experimental results on real-life trajectory data verify the efficiency and effectiveness of our method.more » « less
An official website of the United States government

