skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Querying Recurrent Convoys over Trajectory Data
Moving objects equipped with location-positioning devices continuously generate a large amount of spatio-temporal trajectory data. An interesting finding over a trajectory stream is a group of objects that are travelling together for a certain period of time. We observe that existing studies on mining co-moving objects do not consider an important correlation between co-moving objects, which is the reoccurrence of the co-moving pattern. In this study, we propose the problem of finding recurrent co-moving patterns from streaming trajectories, enabling us to discover recent co-moving patterns that are repeated within a given time period. Experimental results on real-life trajectory data verify the efficiency and effectiveness of our method.  more » « less
Award ID(s):
1816889
PAR ID:
10282899
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Intelligent Systems and Technology
Volume:
11
Issue:
5
ISSN:
2157-6904
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The detection of abnormal moving objects over high-volume trajectory streams is critical for real-time applications ranging from military surveillance to transportation management. Yet this outlier detection problem, especially along both the spatial and temporal dimensions, remains largely unexplored. In this work, we propose a rich taxonomy of novel classes of neighbor-based trajectory outlier definitions that model the anomalous behavior of moving objects for a large range of real-time applications. Our theoretical analysis and empirical study on two real-world datasets—the Beijing Taxi trajectory data and the Ground Moving Target Indicator data stream—and one generated Moving Objects dataset demonstrate the effectiveness of our taxonomy in effectively capturing different types of abnormal moving objects. Furthermore, we propose a general strategy for efficiently detecting these new outlier classes called the minimal examination (MEX) framework. The MEX framework features three core optimization principles, which leverage spatiotemporal as well as the predictability properties of the neighbor evidence to minimize the detection costs. Based on this foundation, we design algorithms that detect the outliers based on these classes of new outlier semantics that successfully leverage our optimization principles. Our comprehensive experimental study demonstrates that our proposed MEX strategy drives the detection costs 100-fold down into the practical realm for applications that analyze high-volume trajectory streams in near real time. 
    more » « less
  2. We address the problem of efficient maintenance of the answer to a new type of query: Continuous Maximizing Range- Sum (Co-MaxRS) for moving objects trajectories. The traditional static/spatial MaxRS problem finds a location for placing the centroid of a given (axes-parallel) rectangle R so that the sum of the weights of the point-objects from a given set O inside the interior of R is maximized. However, moving objects continuously change their locations over time, so the MaxRS solution for a particular time instant need not be a solution at another time instant. In this paper, we devise the conditions under which a particular MaxRS solution may cease to be valid and a new optimal location for the query-rectangle R is needed. More specifically, we solve the problem of maintaining the trajectory of the centroid of R. In addition, we propose efficient pruning strategies (and corresponding data structures) to speed-up the process of maintaining the accuracy of the Co-MaxRS solution. We prove the correctness of our approach and present experimental evaluations over both real and synthetic datasets, demonstrating the benefits of the proposed methods. 
    more » « less
  3. We present a system for efficient detection, continuous maintenance and visualization of range-constrained optimal density clusters of moving objects trajectories, a.k.a. Continuous Maximizing Range Sum (Co-MaxRS) queries. Co-MaxRS is useful in any domain involving continuous detection of “most interesting” regions involving mobile entities (e.g., traffic monitoring, environmental tracking, etc.). Traditional MaxRS finds a location of a given rectangle R which maximizes the sum of the weighted-points (objects) in its interior. Since moving objects continuously change their locations, the MaxRS at a particular time instant need not be a solution at another time instant. Our system solves two important problems: (1) Efficiently computing Co-MaxRS answer-set; and (2) Visualizing the results. This demo will present the implementation of our efficient pruning schemes and compact data structures, and illustrate the end-user tools for specifying the parameters and selecting datasets for Co-MaxRS, along with visualization of the optimal locations. 
    more » « less
  4. Abstract A reexamination of period-finding algorithms is prompted by new large-area astronomical sky surveys that can identify billions of individual sources having a thousand or more observations per source. This large increase in data necessitates fast and efficient period detection algorithms. In this paper, we provide an initial description of an algorithm that is being used for the detection of periodic behavior in a sample of 1.5 billion objects using light curves generated from Zwicky Transient Facility (ZTF) data. We call this algorithm “Fast Periodicity Weighting” (FPW), derived using a Gaussian Process formalism. Periodic sources in ZTF show a wide variety of waveforms, some quite complex, including eclipsing objects, sinusoidally varying objects also exhibiting eclipses, objects with cyclotron emission at various phases, and accreting objects with complex waveforms. A major advantage of the FPW algorithm is that it is sensitive to a broad range of waveforms. We describe the FPW algorithm and its application to ZTF, and provide efficient code for both CPU and GPU. 
    more » « less
  5. null (Ed.)
    Cycling, as a green transportation mode, provides an environmentally friendly transportation choice for short-distance traveling. However, cyclists are also getting involved in fatal accidents more frequently in recent years. Thus, understanding and modeling their road behaviors is crucial in helping improving road safety laws and infrastructures. Traditionally, people understand road user behavior using either purely spatial trajectory data, or videos from fixed surveillance camera through tracking or predicting their paths. However, these data only cover limited areas and do not provide information from the cyclist's field of view. In this paper, we take advantage of geo-referenced egocentric video data collected from the handlebar cameras of cyclists to learn how to predict their behaviors. This approach is technically more challenging, because both the observer and objects in the scene might be moving, and there are strong temporal dependencies in both the behaviors of cyclists and the video scenes. We propose Cycling-Net, a novel deep learning model that tracks different types of objects in consecutive scenes and learns the relationship between the movement of these objects and the behavior of the cyclist. Experiment results on a naturalistic trip dataset show the Cycling-Net is effective in behavior prediction and outperforms a baseline model. 
    more » « less