This content will become publicly available on October 1, 2024
There is a clear need to understand the effect of human intervention on the evolution of infectious disease. In particular, culling and harvesting of both wildlife and managed livestock populations are carried out in a wide range of management practices, and they have the potential to impact the evolution of a broad range of disease characteristics. Applying eco‐evolutionary theory we show that once culling/harvesting becomes targeted on specific disease classes, the established result that culling selects for higher virulence is only found when sufficient infected individuals are culled. If susceptible or recovered individuals are targeted, selection for lower virulence can occur. An important implication of this result is that when culling to eradicate an infectious disease from a population, while it is optimal to target infected individuals, the consequent evolution can increase the basic reproductive ratio of the infection, , and make parasite eradication more difficult. We show that increases in evolved virulence due to the culling of infected individuals can lead to excess population decline when sustainably harvesting a population. In contrast, culling susceptible or recovered individuals can select for decreased virulence and a reduction in population decline through culling. The implications to the evolution of virulence are typically the same in wildlife populations, that are regulated by the parasite, and livestock populations, that have a constant population size where restocking balances the losses due to mortality. However, the well‐known result that vertical transmission selects for lower virulence and transmission in wildlife populations is less marked in livestock populations for parasites that convey long‐term immunity since restocking can enhance the density of the immune class. Our work emphasizes the importance of understanding the evolutionary consequences of intervention strategies and the different ecological feedbacks that can occur in wildlife and livestock populations.
more » « less- Award ID(s):
- 2011109
- NSF-PAR ID:
- 10524024
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Evolutionary Applications
- Volume:
- 16
- Issue:
- 10
- ISSN:
- 1752-4571
- Page Range / eLocation ID:
- 1697 to 1707
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host–parasite coevolution.more » « less
-
Abstract Virulence, the degree to which a pathogen harms its host, is an important but poorly understood aspect of host-pathogen interactions. Virulence is not static, instead depending on ecological context and potentially evolving rapidly. For instance, at the start of an epidemic, when susceptible hosts are plentiful, pathogens may evolve increased virulence if this maximizes their intrinsic growth rate. However, if host density declines during an epidemic, theory predicts evolution of reduced virulence. Although well-studied theoretically, there is still little empirical evidence for virulence evolution in epidemics, especially in natural settings with native host and pathogen species. Here, we used a combination of field observations and lab assays in the
Daphnia -Pasteuria model system to look for evidence of virulence evolution in nature. We monitored a large, naturally occurring outbreak ofPasteuria ramosa inDaphnia dentifera , where infection prevalence peaked at ~ 40% of the population infected and host density declined precipitously during the outbreak. In controlled infections in the lab, lifespan and reproduction of infected hosts was lower than that of unexposed control hosts and of hosts that were exposed but not infected. We did not detect any significant changes in host resistance or parasite infectivity, nor did we find evidence for shifts in parasite virulence (quantified by host lifespan and number of clutches produced by hosts). However, over the epidemic, the parasite evolved to produce significantly fewer spores in infected hosts. While this finding was unexpected, it might reflect previously quantified tradeoffs: parasites in high mortality (e.g., high predation) environments shift from vegetative growth to spore production sooner in infections, reducing spore yield. Future studies that track evolution of parasite spore yield in more populations, and that link those changes with genetic changes and with predation rates, will yield better insight into the drivers of parasite evolution in the wild. -
Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost–benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence–transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.more » « less
-
Abstract Theory on the evolution of niche width argues that resource heterogeneity selects for niche breadth. For parasites, this theory predicts that parasite populations will evolve, or maintain, broader host ranges when selected in genetically diverse host populations relative to homogeneous host populations. To test this prediction, we selected the bacterial parasite
Serratia marcescens to killCaenorhabditis elegans in populations that were genetically heterogeneous (50% mix of two experimental genotypes) or homogeneous (100% of either genotype). After 20 rounds of selection, we compared the host range of selected parasites by measuring parasite fitness (i.e. virulence, the selected fitness trait) on the two focal host genotypes and on a novel host genotype. As predicted, heterogeneous host populations selected for parasites with a broader host range: these parasite populations gained or maintained virulence on all host genotypes. This result contrasted with selection in homogeneous populations of one host genotype. Here, host range contracted, with parasite populations gaining virulence on the focal host genotype and losing virulence on the novel host genotype. This pattern was not, however, repeated with selection in homogeneous populations of the second host genotype: these parasite populations did not gain virulence on the focal host genotype, nor did they lose virulence on the novel host genotype. Our results indicate that host heterogeneity can maintain broader host ranges in parasite populations. Individual host genotypes, however, vary in the degree to which they select for specialization in parasite populations. -
Abstract During a disease outbreak, healthcare workers (HCWs) are essential to treat infected individuals. However, these HCWs are themselves susceptible to contracting the disease. As more HCWs get infected, fewer are available to provide care for others, and the overall quality of care available to infected individuals declines. This depletion of HCWs may contribute to the epidemic's severity. To examine this issue, we explicitly model declining quality of care in four differential equation-based susceptible, infected and recovered-type models with vaccination. We assume that vaccination, recovery and survival rates are affected by quality of care delivered. We show that explicitly modelling HCWs and accounting for declining quality of care significantly alters model-predicted disease outcomes, specifically case counts and mortality. Models neglecting the decline of quality of care resulting from infection of HCWs may significantly under-estimate cases and mortality. These models may be useful to inform health policy that may differ for HCWs and the general population. Models accounting for declining quality of care may therefore improve the management interventions considered to mitigate the effects of a future outbreak.more » « less