skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subgrid modeling for compound flooding in coastal systems
Compound flooding, the concurrence of multiple flooding mechanisms such as storm surge, heavy rainfall, and riverine flooding, poses a significant threat to coastal communities. To mitigate the impacts of compound flooding, forecasts must represent the variability of flooding drivers over a wide range of spatial scales while remaining timely. One approach to develop these forecasts is through subgrid corrections, which utilize information at smaller scales to “correct” water levels and current velocities averaged over the model scale. Recent studies have shown that subgrid models can improve both accuracy and efficiency; however, existing models are not able to account for the dynamic interactions of hydrologic and hydrodynamic drivers and their contributions to flooding along the smallest flow pathways when using a coarse resolution. Here, we have developed a solver called CoaSToRM (Coastal Subgrid Topography Research Model) with subgrid corrections to compute compound flooding in coastal systems resulting from fluvial, pluvial, tidal, and wind-driven processes. A key contribution is the model’s ability to enforce all flood drivers and use the subgrid corrections to improve the accuracy of the coarse-resolution simulation. The model is validated for Hurricane Eta 2020 in Tampa Bay, showing improved prediction accuracy with subgrid corrections at 42 locations. Subgrid models with coarse resolutions (R2 = 0.70, 0.73, 0.77 for 3-, 1.5-, 0.75-km grids) outperform standard counterparts (R2 = 0.03, 0.14, 0.26). A 3-km subgrid simulation runs roughly 50 times faster than a 0.75-km subgrid simulation, with similar accuracy.  more » « less
Award ID(s):
2103754
PAR ID:
10524198
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Taylor & Francis Group
Date Published:
Journal Name:
Coastal Engineering Journal
ISSN:
2166-4250
Page Range / eLocation ID:
1 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A promising approach to improve climate‐model simulations is to replace traditional subgrid parameterizations based on simplified physical models by machine learning algorithms that are data‐driven. However, neural networks (NNs) often lead to instabilities and climate drift when coupled to an atmospheric model. Here, we learn an NN parameterization from a high‐resolution atmospheric simulation in an idealized domain by accurately calculating subgrid terms through coarse graining. The NN parameterization has a structure that ensures physical constraints are respected, such as by predicting subgrid fluxes instead of tendencies. The NN parameterization leads to stable simulations that replicate the climate of the high‐resolution simulation with similar accuracy to a successful random‐forest parameterization while needing far less memory. We find that the simulations are stable for different horizontal resolutions and a variety of NN architectures, and that an NN with substantially reduced numerical precision could decrease computational costs without affecting the quality of simulations. 
    more » « less
  2. Abstract Flooding is one of the most impactful weather‐related natural hazards. Numerical models that solve the two dimensional (2D) shallow water equations (SWE) represent the first‐principles approach to simulate all types of spatial flooding, such as pluvial, fluvial, and coastal flooding, and their compound dynamics. High spatial resolution (e.g., () m) is needed in 2D SWE simulations to capture flood dynamics accurately, resulting in formidable computational challenges. Thus, relatively coarser spatial resolutions are used for large‐scale simulations of flooding, which introduce uncertainties in the results. It is unclear how the uncertainty associated with the model resolution compares to the uncertainties in precipitation data sets and assumptions regarding boundary conditions when channelized flows interact with other water bodies. In this study, we compare these three sources of uncertainties in 2D SWE simulations for the 2017 Houston flooding event. Our results show that precipitation uncertainty and mesh resolution have more significant impacts on the simulated streamflow and inundation dynamics than the choice of the downstream boundary condition at the watershed outlet. We point out the viability to confine the uncertainty of coarsening mesh resolution by using the variable resolution mesh (VRM) which refines critical topographic features with far fewer grid cells. Specifically, in simulations with VRM, the simulated inundation depths over the refined region are comparable to that use the finest uniform mesh. This study contributes to understanding the challenges and pathways for applying 2D SWE models to improve the realism of flood simulations over large scales. 
    more » « less
  3. Compound flooding events are a threat to many coastal regions and can have widespread socio-economic implications. However, their frequency of occurrence, underlying flood drivers, and direct link to past socio-economic losses are largely unknown despite being key to supporting risk and adaptation assessments. Here, we present an impact-based analysis of compound flooding for 203 coastal counties along the U.S. Gulf and East coasts by combining data from multiple flood drivers and socio-economic loss information from 1980 to 2018. We find that ~80% of all flood events recorded in our study area were compound rather than univariate. In addition, we show that historical compound flooding events in most counties were driven by more than two flood drivers (hydrological, meteorological, and/or oceanographic) and distinct spatial clusters exist that exhibit variability in the underlying driver of compound flood events. Furthermore, we find that in more than 80% of the counties, over 80% of recorded property and crop losses were linked to compound flooding. Nearly 80% of counties have a higher median loss from compound than univariate events. For these counties, the median property loss is over 26 times greater, and the median crop loss is over 76 times greater for compound events on average. Our analysis overcomes some of the limitations of previous compound-event studies based on pre-defined flood drivers and offers new insights into the complex relationship between hazards and associated socio-economic impacts. 
    more » « less
  4. Abstract. Compound flooding, where the combination or successive occurrence of two or more flood drivers leads to a greater impact, can exacerbate the adverse consequences of flooding, particularly in coastal/estuarine regions. This paper reviews the practices and trends in coastal/estuarine compound flood research and synthesizes regional to global findings. Systematic review is employed to construct a literature database of 271 studies relevant to compound flooding in a coastal/estuarine context. This review explores the types of compound flood events, their mechanistic processes, and synthesizes terminology throughout the literature. Considered in the review are six flood drivers (fluvial, pluvial, coastal, groundwater, damming/dam failure, and tsunami) and five precursor events and environmental conditions (soil moisture, snow, temp/heat, fire, and drought). Furthermore, this review summarizes research methodology and study applications trends, and considers the influences of climate change and urban environments. Finally, this review highlights knowledge gaps in compound flood research and discusses the implications on future practices. Our five recommendations for compound flood research are: 1) adopt consistent terminology and approaches; 2) expand the geographic coverage of research; 3) pursue more inter-comparison projects; 4) develop modelling frameworks that better couple dynamic Earth systems; and 5) design urban and coastal infrastructure with compounding in mind. 
    more » « less
  5. Physical parameterizations (or closures) are used as representations of unresolved subgrid processes within weather and global climate models or coarse-scale turbulent models, whose resolutions are too coarse to resolve small-scale processes. These parameterizations are typically grounded on physically based, yet empirical, representations of the underlying small-scale processes. Machine learning-based parameterizations have recently been proposed as an alternative solution and have shown great promise to reduce uncertainties associated with the parameterization of small-scale processes. Yet, those approaches still show some important mismatches that are often attributed to the stochasticity of the considered process. This stochasticity can be due to coarse temporal resolution, unresolved variables, or simply to the inherent chaotic nature of the process. To address these issues, we propose a new type of parameterization (closure), which is built using memory-based neural networks, to account for the non-instantaneous response of the closure and to enhance its stability and prediction accuracy. We apply the proposed memory-based parameterization, with differentiable solver, to the Lorenz ’96 model in the presence of a coarse temporal resolution and show its capacity to predict skillful forecasts over a long time horizon of the resolved variables compared to instantaneous parameterizations. This approach paves the way for the use of memory-based parameterizations for closure problems. 
    more » « less