skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic Simulation of Continuous Time Random Walks: Minimizing Error in Time-Dependent Rate Coefficients for Diffusion-Limited Reactions
A reaction limited by standard diffusion is simulated stochastically to illustrate how the continuous time random walk (CTRW) formalism can be implemented with minimum statistical error. A step-by-step simulation of the diffusive random walk in one dimension reveals the fraction of surviving reactants P(t) as a function of time, and the time-dependent unimolecular reaction rate coefficient K(t). Accuracy is confirmed by comparing the time-dependent simulation to results from the analytical master equation, and the asymptotic solution to that of Fickian diffusion. An early transient feature is shown to arise from higher spatial harmonics in the Fourier distribution of walkers between reaction sites. Statistical ‘shot’ noise in the simulation is quantified along with the offset error due to the discrete time derivative, and an optimal simulation time interval t0 is derived to achieve minimal error in the finite time-difference estimation of the reaction rate. The number of walkers necessary to achieve a given error tolerance is derived, and W = 10^7 walkers is shown to achieve an accuracy of ±0.2% when the survival probability reaches P(t) ∼ 1/3 . The stochastic method presented here serves as an intuitive basis for understanding the CTRW formalism, and can be generalized to model anomalous diffusion-limited reactions to prespecified precision in regimes where the governing wait-time distributions have no analytical solution.  more » « less
Award ID(s):
1912694
PAR ID:
10524200
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of Statistical Theory and Practice
Volume:
17
Issue:
3
ISSN:
1559-8608
Page Range / eLocation ID:
46
Subject(s) / Keyword(s):
Diffusion limited reaction Diffusion controlled reaction Random walk Transients Noise analysis CTRW
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The reaction-diffusion system is naturally used in chemistry to represent substances reacting and diffusing over the spatial domain. Its solution illustrates the underlying process of a chemical reaction and displays diverse spatial patterns of the substances. Numerical methods like finite element method (FEM) are widely used to derive the approximate solution for the reaction-diffusion system. However, these methods require long computation time and huge computation resources when the system becomes complex. In this paper, we study the physics of a two-dimensional one-component reaction-diffusion system by using machine learning. An encoder-decoder based convolutional neural network (CNN) is designed and trained to directly predict the concentration distribution, bypassing the expensive FEM calculation process. Different simulation parameters, boundary conditions, geometry configurations and time are considered as the input features of the proposed learning model. In particular, the trained CNN model manages to learn the time-dependent behaviour of the reaction-diffusion system through the input time feature. Thus, the model is capable of providing concentration prediction at certain time directly with high test accuracy (mean relative error <3.04%) and 300 times faster than the traditional FEM. Our CNN-based learning model provides a rapid and accurate tool for predicting the concentration distribution of the reaction-diffusion system. 
    more » « less
  2. An approximate analytical solution is derived for a certain class of stochastic differential equations with constant diffusion, but nonlinear drift coefficients. Specifically, a closed form expression is derived for the response process transition probability density function (PDF) based on the concept of the Wiener path integral and on a Cauchy–Schwarz inequality treatment. This is done in conjunction with formulating and solving an error minimisation problem by relying on the associated Fokker–Planck equation operator. The developed technique, which requires minimal computational cost for the determination of the response process PDF, exhibits satisfactory accuracy and is capable of capturing the salient features of the PDF as demonstrated by comparisons with pertinent Monte Carlo simulation data. In addition to the mathematical merit of the approximate analytical solution, the derived PDF can be used also as a benchmark for assessing the accuracy of alternative, more computationally demanding, numerical solution techniques. Several examples are provided for assessing the reliability of the proposed approximation. 
    more » « less
  3. Abstract The territory explored by a random walk is a key property that may be quantified by the number of distinct sites that the random walk visits up to a given time. We introduce a more fundamental quantity, the time τ n required by a random walk to find a site that it never visited previously when the walk has already visited n distinct sites, which encompasses the full dynamics about the visitation statistics. To study it, we develop a theoretical approach that relies on a mapping with a trapping problem, in which the spatial distribution of traps is continuously updated by the random walk itself. Despite the geometrical complexity of the territory explored by a random walk, the distribution of the τ n can be accounted for by simple analytical expressions. Processes as varied as regular diffusion, anomalous diffusion, and diffusion in disordered media and fractals, fall into the same universality classes. 
    more » « less
  4. The random order graph streaming model has received significant attention recently, with problems such as matching size estimation, component counting, and the evaluation of bounded degree constant query testable properties shown to admit surprisingly space efficient algorithms. The main result of this paper is a space efficient single pass random order streaming algorithm for simulating nearly independent random walks that start at uniformly random vertices. We show that the distribution of k-step walks from b vertices chosen uniformly at random can be approximated up to error ∊ per walk using  words of space with a single pass over a randomly ordered stream of edges, solving an open problem of Peng and Sohler [SODA '18]. Applications of our result include the estimation of the average return probability of the k-step walk (the trace of the kth power of the random walk matrix) as well as the estimation of PageRank. We complement our algorithm with a strong impossibility result for directed graphs. 
    more » « less
  5. Guruswami, Venkatesan (Ed.)
    Traditional fraud detection is often based on finding statistical anomalies in data sets and transaction histories. A sophisticated fraudster, aware of the exact kinds of tests being deployed, might be difficult or impossible to catch. We are interested in paradigms for fraud detection that are provably robust against any adversary, no matter how sophisticated. In other words, the detection strategy should rely on signals in the data that are inherent in the goals the adversary is trying to achieve. Specifically, we consider a fraud detection game centered on a random walk on a graph. We assume this random walk is implemented by having a player at each vertex, who can be honest or not. In particular, when the random walk reaches a vertex owned by an honest player, it proceeds to a uniformly random neighbor at the next timestep. However, when the random walk reaches a dishonest player, it instead proceeds to an arbitrary neighbor chosen by an omniscient Adversary. The game is played between the Adversary and a Referee who sees the trajectory of the random walk. At any point during the random walk, if the Referee determines that a {specific} vertex is controlled by a dishonest player, the Referee accuses that player, and therefore wins the game. The Referee is allowed to make the occasional incorrect accusation, but must follow a policy that makes such mistakes with small probability of error. The goal of the adversary is to make the cover time large, ideally infinite, i.e., the walk should never reach at least one vertex. We consider the following basic question: how much can the omniscient Adversary delay the cover time without getting caught? Our main result is a tight upper bound on this delay factor. We also discuss possible applications of our results to settings such as Rotor Walks, Leader Election, and Sybil Defense. 
    more » « less