skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Distributed Tracking and Verifying: {A} Real-Time and High-Accuracy Visual Tracking Edge Computing Framework for Internet of Things
Award ID(s):
2128350 2006665
PAR ID:
10524210
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE/ACM Symposium on Edge Computing
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent progresses in model-free single object tracking (SOT) algorithms have largely inspired applying SOT to multi-object tracking (MOT) to improve the robustness as well as relieving dependency on external detector. However, SOT algorithms are generally designed for distinguishing a target from its environment, and hence meet problems when a target is spatially mixed with similar objects as observed frequently in MOT. To address this issue, in this paper we propose an instance-aware tracker to integrate SOT techniques for MOT by encoding awareness both within and between target models. In particular, we construct each target model by fusing information for distinguishing target both from background and other instances (tracking targets). To conserve uniqueness of all target models, our instance-aware tracker considers response maps from all target models and assigns spatial locations exclusively to optimize the overall accuracy. Another contribution we make is a dynamic model refreshing strategy learned by a convolutional neural network. This strategy helps to eliminate initialization noise as well as to adapt to the variation of target size and appearance. To show the effectiveness of the proposed approach, it is evaluated on the popular MOT15 and MOT16 challenge benchmarks. On both benchmarks, our approach achieves the best overall performances in comparison with published results. 
    more » « less
  2. In this work, we present an unexpected connection between gradual typing and type error debugging. Namely, we illustrate that gradual typing provides a natural way to defer type errors in statically ill-typed programs, providing more feedback than traditional approaches to deferring type errors. When evaluating expressions that lead to runtime type errors, the usefulness of the feedback depends on blame tracking, the defacto approach to locating the cause of such runtime type errors. Unfortunately, blame tracking suffers from the bias problem for type error localization in languages with type inference. We illustrate and formalize the bias problem for blame tracking, present ideas for adapting existing type error debugging techniques to combat this bias, and outline further challenges. 
    more » « less