Abstract A Bayesian optimization procedure is presented for calibrating a multi-mechanism micromechanical model for creep to experimental data of F82H steel. Reduced activation ferritic martensitic (RAFM) steels based on Fe(8-9)%Cr are the most promising candidates for some fusion reactor structures. Although there are indications that RAFM steel could be viable for fusion applications at temperatures up to 600 °C, the maximum operating temperature will be determined by the creep properties of the structural material and the breeder material compatibility with the structural material. Due to the relative paucity of available creep data on F82H steel compared to other alloys such as Grade 91 steel, micromechanical models are sought for simulating creep based on relevant deformation mechanisms. As a point of departure, this work recalibrates a model form that was previously proposed for Grade 91 steel to match creep curves for F82H steel. Due to the large number of parameters (9) and cost of the nonlinear simulations, an automated approach for tuning the parameters is pursued using a recently developed Bayesian optimization for functional output (BOFO) framework [1]. Incorporating extensions such as batch sequencing and weighted experimental load cases into BOFO, a reasonably small error between experimental and simulated creep curves at two load levels is achieved in a reasonable number of iterations. Validation with an additional creep curve provides confidence in the fitted parameters obtained from the automated calibration procedure to describe the creep behavior of F82H steel.
more »
« less
High‐fidelity digital twins: Detecting and localizing weaknesses in structures
Abstract An adjoint‐based procedure to determine weaknesses, or, more generally, the material properties of structures is developed and tested. Given a series of load cases and corresponding displacement/strain measurements, the material properties are obtained by minimizing the weighted differences between the measured and computed values. The present paper proposes and tests techniques to minimize the number of load cases and sensors. Several examples show the viability, accuracy and efficiency of the proposed methodology and its potential use for high fidelity digital twins.
more »
« less
- PAR ID:
- 10524293
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- International Journal for Numerical Methods in Engineering
- ISSN:
- 0029-5981
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Controlling the deformation of a soft body has potential applications in fields requiring precise control over the shape of the body. Areas such as medical robotics can use the shape control of soft robots to repair aneurysms in humans, deliver medicines within the body, among other applications. However, given known external loading, it is usually not possible to deform a soft body into arbitrary shapes if it is fabricated using only a single material. In this work, we propose a new physics-based method for the computational design of soft hyperelastic bodies to address this problem. The method takes as input an undeformed shape of a body, a specified external load, and a user desired final shape. It then solves an inverse problem in design using nonlinear optimization subject to physics constraints. The nonlinear program is solved using a gradient-based interior-point method. Analytical gradients are computed for efficiency. The method outputs fields of material properties which can be used to fabricate a soft body. A body fabricated to match this material field is expected to deform into a user-desired shape, given the same external loading input. Two regularizers are used to ascribea prioricharacteristics of smoothness and contrast, respectively, to the spatial distribution of material fields. The performance of the method is tested on three example cases in silico.more » « less
-
Abstract Unlike nearly all engineered materials which contain bonds that weaken under load, biological materials contain “catch” bonds which are reinforced under load. Consequently, materials, such as the cell cytoskeleton, can adapt their mechanical properties in response to their state of internal, non‐equilibrium (active) stress. However, how large‐scale material properties vary with the distance from equilibrium is unknown, as are the relative roles of active stress and binding kinetics in establishing this distance. Through course‐grained molecular dynamics simulations, the effect of breaking of detailed balance by catch bonds on the accumulation and dissipation of energy within a model of the actomyosin cytoskeleton is explored. It is found that the extent to which detailed balance is broken uniquely determines a large‐scale fluid‐solid transition with characteristic time‐reversal symmetries. The transition depends critically on the strength of the catch bond, suggesting that active stress is necessary but insufficient to mount an adaptive mechanical response.more » « less
-
Abstract Materials based on minimal surface geometries have shown superior strength and stiffness at low densities, which makes them promising continuous‐based material platforms for a variety of engineering applications. In this work, it is demonstrated how these mechanical properties can be complemented by dynamic functionalities resulting from robust topological guiding of elastic waves at interfaces that are incorporated into the considered material platforms. Starting from the definition of Schwarz P minimal surface, geometric parametrizations are introduced that break spatial symmetry by forming 1D dimerized and 2D hexagonal minimal surface‐based materials. Breaking of spatial symmetries produces topologically non‐trivial interfaces that support the localization of vibrational modes and the robust propagation of elastic waves along pre‐defined paths. These dynamic properties are predicted through numerical simulations and are illustrated by performing vibration and wave propagation experiments on additively manufactured samples. The introduction of symmetry‐breaking topological interfaces through parametrizations that modify the geometry of periodic minimal surfaces suggests a new strategy to supplement the load‐bearing properties of this class of materials with novel dynamic functionalities.more » « less
-
In this experimental research a transparent thermoplastic manufactured by the DOW Corporation and known as Surlyn is investigated for use as an interface material in fabrication of an all-glass pedestrian bridge. The bridge is modular in construction and fabricated from a series of interlocking hollow glass units (HGU) that are geometrically arranged to form a compression dominant structural system. Surlyn is used as a friction-based interface between neighbouring HGUs preventing direct glass-to-glass contact. An experimental program consisting of axial loading of short glass columns (SGC) sandwiched between Surlyn sheets is used to quantify the bearing capacity at which glass fracture occurs at the glass-Surlyn interface location. Applied load cases include 100,000 cycles of cyclic load followed by 12 hours of sustained load followed by monotonic load to cracking, and monotonic loading to cracking with no previous load history. Test results show that Surlyn functions as an effective interface material with glass fracture occurring at bearing stress levels in excess of the column-action capacity of an individual HGU. Furthermore, load cycling and creep loading had no effect on the glass fracture capacity. However, the load history had a nominal effect on Surlyn, increasing stiffness and reducing deformation.more » « less
An official website of the United States government
