skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complex quantum network models from spin clusters
Abstract In the emerging quantum internet, complex network topology could lead to efficient quantum communication and robustness against failures. However, there are concerns about complexity in quantum communication networks, such as potentially limited end-to-end transmission capacity. These challenges call for model systems in which the impact of complex topology on quantum communication protocols can be explored. Here, we present a theoretical model for complex quantum communication networks on a lattice of spins, wherein entangled spin clusters in interacting quantum spin systems serve as communication links between appropriately selected regions of spins. Specifically, we show that ground state Greenberger-Horne-Zeilinger clusters of the two-dimensional random transverse-field Ising model can be used as communication links between regions of spins. Further, the resulting quantum networks can have complexity comparable to that of the classical internet. Our work provides a generative model for further studies towards determining the network characteristics of the emerging quantum internet.  more » « less
Award ID(s):
2310706
PAR ID:
10524399
Author(s) / Creator(s):
;
Publisher / Repository:
Communications Physics
Date Published:
Journal Name:
Communications Physics
Volume:
6
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the ground states of spin models defined on networks that we imprint (e.g., non-complex random networks like Erdos–Renyi, or complex networks like Watts–Strogatz, and Barabasi–Albert), and their response to decohering processes which we model with network attacks. We quantify the complexity of these ground states, and their response to the attacks, by calculating distributions of network measures of an emergent network whose link weights are the pairwise mutual information between spins. We focus on attacks which projectively measure spins. We find that the emergent networks in the ground state do not satisfy the usual criteria for complexity, and their average properties are captured well by a single dimensionless parameter in the Hamiltonian. While the response of classical networks to attacks is well-studied, where classical complex networks are known to be more robust to random attacks than random networks, we find counter-intuitive results for our quantum networks. We find that the ground states for Hamiltonians defined on different classes of imprinted networks respond similarly to all our attacks, and the attacks rescale the average properties of the emergent network by a constant factor. Mean field theory explains these results for relatively dense networks, but we also find the simple rescaling behavior away from the regime of validity of mean field theory. Our calculations indicate that complex spin networks are not more robust to projective measurement attacks, and presumably also other quantum attacks, than non-complex spin networks, in contrast to the classical case. Understanding the response of the spin networks to decoherence and attacks will have applications in understanding the physics of open quantum systems, and in designing robust complex quantum systems—possibly even a robust quantum internet in the long run—that is maximally resistant to decoherence. 
    more » « less
  2. Abstract Network theory helps us understand, analyze, model, and design various complex systems. Complex networks encode the complex topology and structural interactions of various systems in nature. To mine the multiscale coupling, heterogeneity, and complexity of natural and technological systems, we need expressive and rigorous mathematical tools that can help us understand the growth, topology, dynamics, multiscale structures, and functionalities of complex networks and their interrelationships. Towards this end, we construct the node-based fractal dimension (NFD) and the node-based multifractal analysis (NMFA) framework to reveal the generating rules and quantify the scale-dependent topology and multifractal features of a dynamic complex network. We propose novel indicators for measuring the degree of complexity, heterogeneity, and asymmetry of network structures, as well as the structure distance between networks. This formalism provides new insights on learning the energy and phase transitions in the networked systems and can help us understand the multiple generating mechanisms governing the network evolution. 
    more » « less
  3. Large multipartite quantum systems tend to rapidly reach extraordinary levels of complexity as their number of constituents and entanglement links grow. Here we use complex network theory to study a class of continuous variables quantum states that present both multipartite entanglement and non-Gaussian statistics. In particular, the states are built from an initial imprinted cluster state created via Gaussian entangling operations according to a complex network structure. To go beyond states that can be easily simulated via classical computers we engender non-Gaussian statistics via multiple photon subtraction operations. We then use typical networks measures, the degree and clustering, to characterize the emergent complex network of photon-number correlations after photon subtractions. We show that, in contrast to regular clusters, in the case of imprinted complex network structures the emergent correlations are strongly affected by photon subtraction. On the one hand, we unveil that photon subtraction universally increases the average photon-number correlations, regardless of the imprinted network structure. On the other hand, we show that the shape of the distributions in the emergent networks after subtraction is greatly influenced by the structure of the imprinted network, as witnessed by their higher-moments. Thus for the field of network theory, we introduce a new class of networks to study. At the same time for the field of continuous variable quantum states, this work presents a new set of practical tools to benchmark systems of increasing complexity. 
    more » « less
  4. Abstract This paper explores the Glauber dynamics of spin systems with asymmetric coupling, a scenario that inherently violates detailed balance, leading to non-equilibrium steady states. By focusing on weighted and heterogeneous networks, we extend the applicability of Glauber models to capture complex real-world interactions, such as those seen in multilayer and hierarchical systems. Under specific assumptions on the coupling matrix, we demonstrate the tractability of these dynamics in the limit as the number of spins approaches infinity. Our results highlight the influence of network topology on dynamic behavior and provide a framework for analyzing stochastic processes in diverse applications, from statistical mechanics to data-driven modeling in applied sciences. The approach also uncovers potential for leveraging non-equilibrium dynamics in machine learning and network analysis. 
    more » « less
  5. Abstract The growing complexity of biological data has spurred the development of innovative computational techniques to extract meaningful information and uncover hidden patterns within vast datasets. Biological networks, such as gene regulatory networks and protein-protein interaction networks, hold critical insights into biological features’ connections and functions. Integrating and analyzing high-dimensional data, particularly in gene expression studies, stands prominent among the challenges in deciphering these networks. Clustering methods play a crucial role in addressing these challenges, with spectral clustering emerging as a potent unsupervised technique considering intrinsic geometric structures. However, spectral clustering’s user-defined cluster number can lead to inconsistent and sometimes orthogonal clustering regimes. We propose theMulti-layer Bundling (MLB)method to address this limitation, combining multiple prominent clustering regimes to offer a comprehensive data view. We call the outcome clusters “bundles”. This approach refines clustering outcomes, unravels hierarchical organization, and identifies bridge elements mediating communication between network components. By layering clustering results, MLB provides a global-to-local view of biological feature clusters enabling insights into intricate biological systems. Furthermore, the method enhances bundle network predictions by integrating thebundle co-cluster matrixwith the affinity matrix. The versatility of MLB extends beyond biological networks, making it applicable to various domains where understanding complex relationships and patterns is needed. 
    more » « less