Abstract Climate change has adverse impacts on Arctic natural ecosystems and threatens northern communities by disrupting subsistence practices, limiting accessibility, and putting built infrastructure at risk. In this paper, we analyze spatial patterns of permafrost degradation and associated risks to built infrastructure due to loss of bearing capacity and thaw subsidence in permafrost regions of the Arctic. Using a subset of three Coupled Model Intercomparison Project 6 models under SSP245 and 585 scenarios we estimated changes in permafrost bearing capacity and ground subsidence between two reference decades: 2015–2024 and 2055–2064. Using publicly available infrastructure databases we identified roads, railways, airport runways, and buildings at risk of permafrost degradation and estimated country-specific costs associated with damage to infrastructure. The results show that under the SSP245 scenario 29% of roads, 23% of railroads, and 11% of buildings will be affected by permafrost degradation, costing $182 billion to the Arctic states by mid-century. Under the SSP585 scenario, 44% of roads, 34% of railroads, and 17% of buildings will be affected with estimated cost of $276 billion, with airport runways adding an additional $0.5 billion. Russia is expected to have the highest burden of costs, ranging from $115 to $169 billion depending on the scenario. Limiting global greenhouse gas emissions has the potential to significantly decrease the costs of projected damages in Arctic countries, especially in Russia. The approach presented in this study underscores the substantial impacts of climate change on infrastructure and can assist to develop adaptation and mitigation strategies in Arctic states.
more »
« less
The Flight to Safety and International Risk Sharing
We study a business cycle model of the international monetary system featuring a time-varying demand for safe dollar bonds, greater risk-bearing capacity in the United States than the rest of the world, and nominal rigidities. A flight to safety generates a dollar appreciation and decline in global output. Dollar bonds thus command a negative risk premium, and the United States holds a levered portfolio of capital financed in dollars. We quantify the effects of safety shocks and heterogeneity in risk-bearing capacity for global macroeconomic volatility, US external adjustment, and policy transmission, as of dollar swap lines. (JEL E32, E43, E44, E52, F44, G11, G15)
more »
« less
- PAR ID:
- 10524527
- Publisher / Repository:
- American Economic Association
- Date Published:
- Journal Name:
- American Economic Review
- Volume:
- 114
- Issue:
- 6
- ISSN:
- 0002-8282
- Page Range / eLocation ID:
- 1650 to 1691
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A. Ghate, K. Krishnaiyer (Ed.)Deaths due to road traffic accidents are one of the leading causes of death in the United States. Furthermore, the economic impact of road traffic accidents accounts for about 3% of the United States' annual gross domestic product (GDP). In the past decade, extensive research has focused on autonomous vehicles (AVs). This technology is said to help prevent traffic accidents while promoting road traffic safety. This study aims to investigate the safety performance of AVs and identify the significant risk factors associated with the AV collisions. The study considers more than 200 crashes involving AVs and includes vehicle factors, environmental factors, collision type and crash severity. Multinomial logistic regression was conducted with collision type. The results showed no statistically significant risk factors to crash severity. However, movement preceding to collision contributes significantly to collision type. When both vehicles are moving, there's a higher likelihood of an angled collision, 47% to be exact. The other scenario which demonstrates a high probability of an angled collision is when the AV vehicle is not moving while the other is moving. The highest probability for a rear-end collision to occur is when the AV vehicle is not moving while the other is moving. This scenario makes up 55% of the entire rear-end collisions. As for the second-highest proportion, both vehicles moving, it consists of 42%. The research shall help reduce AV involved collisions and increase driving safety.more » « less
-
Abstract Although hydropower produces a relatively small portion of the electricity we use in the United States, it is a flexible and dispatchable resource that serves various critical functions for managing the electricity grid. Climate-induced changes to water availability will affect future hydropower production, and such changes could impact how the areas where the supply and demand of electricity are balanced, called balancing authority areas, are able to meet decarbonization goals. We calculate hydroclimate risk to hydropower at the balancing authority scale, which is previously underexplored in the literature and has real implications for decarbonization and resilience-building. Our results show that, by 2050, most balancing authority areas could experience significant changes in water availability in areas where they have hydropower. Balancing areas facing the greatest changes are located in diverse geographic areas, not just the Western and Northwestern United States, and vary in hydropower generation capacity. The range of projected changes experienced within each balancing area could exacerbate or offset existing hydropower generation deficits. As power producers and managers undertake increasing regional cooperation to account for introducing more variable renewable energy into the grid, analysis of risk at this regional scale will become increasingly salient.more » « less
-
Safety and performance are key enablers for autonomous driving: on the one hand we want our autonomous vehicles (AVs) to be safe, while at the same time, their performance (e.g., comfort or progression) is key to adoption. To effectively walk the tight-rope between safety and performance, AVs need to be risk-averse, but not entirely risk-avoidant. To facilitate safe-yet-performant driving, in this paper, we develop a task-aware risk estimator that assesses the risk a perception failure poses to the AV's motion plan. If the failure has no bearing on the safety of the AV's motion plan, then regardless of how egregious the perception failure is, our task-aware risk estimator considers the failure to have a low risk; on the other hand, if a seemingly benign perception failure severely impacts the motion plan, then our estimator considers it to have a high risk. In this paper, we propose a task-aware risk estimator to decide whether a safety maneuver needs to be triggered. To estimate the task-aware risk, first, we leverage the perception failure - detected by a perception monitor - to synthesize an alternative plausible model for the vehicle's surroundings. The risk due to the perception failure is then formalized as the "relative" risk to the AV's motion plan between the perceived and the alternative plausible scenario. We employ a statistical tool called copula, which models tail dependencies between distributions, to estimate this risk. The theoretical properties of the copula allow us to compute probably approximately correct (PAC) estimates of the risk. We evaluate our task-aware risk estimator using NuPlan and compare it with established baselines, showing that the proposed risk estimator achieves the best F1-score (doubling the score of the best baseline) and exhibits a good balance between recall and precision, i.e., a good balance of safety and performance.more » « less
-
Escalating wildfire activity in the western United States has accelerated adverse societal impacts. Observed increases in wildfire severity and impacts to communities have diverse anthropogenic causes—including the legacy of fire suppression policies, increased development in high-risk zones, and aridification by a warming climate. However, the intentional use of fire as a vegetation management tool, known as “prescribed fire,” can reduce the risk of destructive fires and restore ecosystem resilience. Prescribed fire implementation is subject to multiple constraints, including the number of days characterized by weather and vegetation conditions conducive to achieving desired outcomes. Here, we quantify observed and projected trends in the frequency and seasonality of western United States prescribed fire days. We find that while ~2 C of global warming by 2060 will reduce such days overall (−17%), particularly during spring (−25%) and summer (−31%), winter (+4%) may increasingly emerge as a comparatively favorable window for prescribed fire especially in northern states.more » « less
An official website of the United States government

