skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: THE IMPACT OF WORKING IN A STATISTICAL COLLABORATION LABORATORY ON THE STATISTICS STUDENT COLLABORATORS
Graduate level statistics education curricula often emphasize technical instruction in theory and methodology but can fail to provide adequate practical training in applications and collaboration skills. We argue that a statistical collaboration center (“stat lab”) structured in the style of the University of Colorado Boulder’s Laboratory for Interdisciplinary Statistical Analysis (LISA) is an effective mechanism for providing graduate students with necessary training in technical, non-technical, and job-related skills. We summarize the operating structure of LISA, and then provide evidence of its positive impact on students via analyses of a survey completed by 123 collaborators who worked in LISA between 2008–15 while it was housed at Virginia Tech. Students described their work in LISA as having had a positive impact on acquiring technical (94%) and non-technical (95%) statistics skills. Five-sixths (83%) of the students reported that these skills will or have helped them advance in their careers. We call for the integration of stat labs into statistics and data science programs as part of a comprehensive and modern statistics education, and for further research on students’ experience in these labs and the impact on student outcomes.  more » « less
Award ID(s):
1955109
PAR ID:
10524556
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IASE
Date Published:
Journal Name:
STATISTICS EDUCATION RESEARCH JOURNAL
Volume:
22
Issue:
3
ISSN:
1570-1824
Page Range / eLocation ID:
9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Researcher innovation and leadership skills are fundamental to create implementable solutions to pressing societal- and market-based global problems. The Research to Innovation to Society (R2I2S) program is a transformative approach to graduate education, training students at the intersection of research, innovation, and leadership. We detail the design of the program, and a three-year exploratory investigation of its impact at one research university in the western United States. We found that, overall, students who participated in the program realized the value of thinking about their scientific research from a market-need perspective. Students perceived enhanced interest in and understanding of societal and market insights related to their own and other’s research. As well, students developed professional skills in communication, team collaboration, innovation, and entrepreneurial skills. We situate our findings in frameworks concerning the development of emerging professionals and argue for programming for STEM graduate students that extends the deep discipline knowledge-based model of professional development into one inclusive of leadership, communication, and innovation goals. 
    more » « less
  2. Driven by the fact that a great majority of STEM PhD graduates will be employed in non-academic jobs, primarily in industry (defined broadly to include private corporations, national labs, defense organizations, etc.), there is a growing recognition that the present format of doctoral training does not prepare them sufficiently for a career outside academia. In response to this need, recently a new student-centered model of STEM doctorate, Pasteur Partners PhD (P3), was developed based on use-inspired research [3]. Industry-university partnership is a requirement of this model, which calls for concerted participation of industry experts in the training of students through identification of industry-relevant research problems, co-advising about how to approach their practical solutions, and training for other non-technical skills that are crucial for success in industry. An assessment of student demand and their experience with P3’s non-traditional features, support of university administration, and the challenges felt by interested faculty advisers during its implementation at Lehigh University were presented previously. This paper completes P3 program’s assessment by analyzing the feedback provided by industry scientists who have served as co-advisers to students. The specific objective of the present study is to establish not only the benefits to students but also the advantages these collaborations offer to the industry researchers themselves as well as their organizations. Accordingly, we solicited feedback about the experience of the industry co-advisers from serving as mentors of P3 fellows. Briefly, the mentors were generally positive about their engagement with students as research advisers and hosts for experiments in their labs. The mentors from national labs were especially appreciative of the opportunity to expand the scope of their own research program as a result of these interactions. They also highlighted the effectiveness of pre-program internships in fostering long-term research productivity, as well as the training provided in the corresponding courses such as project management. With regard to improving the program, the industry mentors expressed a desire for clearer expectations regarding their role in mentoring students, particularly when students return to university. A detailed analysis of the feedback provided by industry mentors and its implications for further improving the P3 model, indeed the state of STEM doctoral training, are presented. The conclusions of this study are expected to have broad impact beyond the P3 model as they provide valuable insight into the mutual benefits of industry-university partnership for doctoral education. 
    more » « less
  3. Driven by the fact that a great majority of STEM PhD graduates will be employed in non-academic jobs, primarily in industry (defined broadly to include private corporations, national labs, defense organizations, etc.), there is growing recognition that the present format of doctoral training does not prepare them sufficiently for a career outside academia. In response to this need, recently a new student-centered model of STEM doctorate, Pasteur Partners PhD (P3), was developed based on use-inspired research. Industry-university partnership is a requirement of this model, which calls for concerted participation of industry experts in the training of students through identification of industry-relevant research problems, co-advising about how to approach their practical solutions, and training for other non-technical skills that are crucial for success in industry. An assessment of student demand and their experience with P3’s non-traditional features, support of university administration, and the challenges felt by interested faculty advisers during its implementation at Lehigh University were presented previously. This paper completes P3 program’s assessment by analyzing the feedback provided by industry scientists who have served as co-advisers to students. The specific objective of the present study is to establish not only the benefits to students but also the advantages these collaborations offer to the industry researchers themselves as well as their organizations. Accordingly, we solicited feedback about the experience of the industry co-advisers from serving as mentors of P3 fellows. Briefly, the mentors were generally positive about their engagement with students as research advisers and hosts for experiments in their labs. The mentors from national labs were especially appreciative of the opportunity to expand the scope of their own research program as a result of these interactions. They also highlighted the effectiveness of pre-program internships in fostering long-term research productivity, as well as the training provided in the corresponding courses such as project management. With regard to improving the program, the industry mentors expressed a desire for clearer expectations regarding their role in mentoring students, particularly when students return to university. A detailed analysis of the feedback provided by industry mentors and its implications for further improving the P3 model, indeed the state of STEM doctoral training, are presented. The conclusions of this study are expected to have broad impact beyond the P3 model as they provide valuable insight into the mutual benefits of industry-university partnership for doctoral education. 
    more » « less
  4. Science, Technology, Engineering, and Mathematics (STEM) graduate education traditionally has focused on developing technical and research skills needed to be successful in academic and research settings. In the past decade, however, STEM graduate students increasingly have sought positions in the industry [1]; a recent study by Sherman et al. [2] found that non-academic industry jobs were the most preferred career choice for STEM doctoral students. Despite this preference, graduate education has yet to adapt to better prepare students for their industry positions; a significant portion of students need critical professional skills, such as project management (PM), needed to be effective leaders in these non-academic environments [3-9]. Although a required skill in the industry, these professional skills also can significantly enhance future careers within research and the academy. 
    more » « less
  5. Science, Technology & Society (STS) graduate programs primarily train graduate students to work in tenure track academic jobs. However, there are not enough tenure track academic jobs to match the supply of STS graduate students, nor does every STS graduate student want to become an academic. As a start to addressing these challenges, we hosted workshops before the 2017 Society for the Annual Meeting of the Society Studies of Science and the 2018 ST Global conference. In those workshops, panelists with PhDs in STS and related fields and working in non-academic faculty careers such as government agencies, non-profit foundations, and industry emphasized that students must showcase how their skills are useful to non-academic organizations. The panelists offered a wealth of stories on how their STS perspective supported their careers, yet most had faced implicit and explicit mentoring from STS faculty that ran counter to their career aspirations. The conversations centered on reframing research and conveying to potential employers how their STS training would support their future careers. A takeaway point that resonated with many participants was the need for STS graduate programs to rethink how they market themselves, recruit students, and critically reflect upon the measures of success. By implicitly steering graduate students solely towards an academic career, STS graduate training will miss an opportunity to make a positive impact on society 
    more » « less