skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exceptional thermal conductivity increase of Nafion by hydrogen-bonded water molecules
Nafion, a widely used proton exchange membrane in fuel cells, is a representative perfluorosulfonic acid membrane consisting of a hydrophobic Teflon backbone and hydrophilic sulfonic acid side chains. Its thermal conductivity (k) is critical to fuel cell's thermal management. During fuel cell operation, water molecules inevitably enter Nafion and could strongly affect its k. In this work, we measure the k of Nafion of different water content (λ). Findings reveal that k is significantly low in a vacuum environment characterized as 0.110 W m−1 K−1, but at λ ∼1, a notable increase is observed, reaching 0.162 W m−1 K−1. Moreover, k at λ ≈ 6 is 60% higher than that of λ ∼1. This exceptional k increase is far beyond the theoretical prediction by the effective medium theory that only considers simply physical mixing. Rather this k increase is attributed to the formation of water clusters and channels with increased λ, creating thermal pathways through hydrogen bonding, thereby improving chemical connections within the Nafion structure and augmenting its k. Furthermore, it is observed that Nafion's k reaches the maximum value of 0.256 W m−1 K−1 at λ ≈ 6, with no further increase up to λ ≈ 10.5. This phenomenon is explained by the coalescence of water clusters at λ ≈ 6, forming channels that optimize heat transfer pathways and connections within the Nafion structure. Moreover, the free movement of water molecules within water channels (λ > 6) shows physical alterations in Nafion structure (significant volume increase), which have a lesser impact on k.  more » « less
Award ID(s):
2032464
PAR ID:
10524712
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Applied Physics Letters
Volume:
124
Issue:
26
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A PEM fuel cell with the Nafion ionomer phase of the cathode catalyst layer (CL) that was exposed to hot dry gas during the hot‐pressing process showed improved performance over the whole current density range and ~ 220% peak power increase with humidified air at 80°C. This enhanced performance is attributed to the modified structure of the perfluorosulfonic acid (PFSA) ionomer layer in the CL during the MEA's hot‐pressing process. The dry gas exposure above the glass transition temperature (Tg) results in the aggregation of the ionic groups to retain the residue water molecules. This process separates the ionomer into ionic‐group‐rich domains and ionic‐group‐sparse domains. The ionic‐group‐sparse domains create hydrophobic interface and reactant transport channels with lower water content and thus higher oxygen solubility in the ionomer. Accordingly, the water‐unsaturated ionomer and its surface hydrophobicity enhance the kinetic‐controlled and concentration‐polarized regions of the fuel cell polarization curve, respectively. The surface hydrophobicity of the ionomer layer is analyzed by the contact angle measurement and XPS. The durability of the hydrophobic effect belowTgis demonstrated by boiling the treated material. Re‐treating the hydrophobic sample with humidified gas exposure aboveTgeventually exhibits hydrophilic features, further proving the manipulability of the ionic group distribution. 
    more » « less
  2. Abstract Biocrusts are a critical surface cover in global drylands, but knowledge about their influences on surface soil thermal properties are still lacking because it is quite challenging to make accurate thermal property measurements for biocrust layers, which are only millimetres thick. In this study, we repacked biocrust layers (moss‐ and cyanobacteria‐dominated, respectively) that had the same material as the original intact biocrusts but was more homogeneous and thicker. The thermal conductivity (λ), heat capacity (C) and thermal diffusivity (k) of the repacked and intact biocrusts were measured by the heat pulse (HP) technique at different mass water contents (θm) and mass ratios (Wt), and the differences between repacked and intact biocrusts were analysed. Our results show that biocrusts substantially alter the thermal properties of the soil surface. The averageλof moss (0.37 W m−1 K−1) and cyanobacteria biocrusts (0.90 W m−1 K−1) were reduced by 63.0% and 10.3% compared with bare soil (1.00 W m−1 K−1), respectively. Edge effects including heat loss and water evaporation caused theλandkof the biocrusts to be underestimated, but theCto be overestimated. The differences in thermal properties were significant (p <0.001), except for the differences in thermal conductivity between repacked and intact cyanobacteria biocrusts, which were not significant (p = 0.379). Specifically, in the volumetric water content (θv) range of 0 to 20%, theλandkof the repacked moss biocrusts were underestimated by 59.1% and 61.8%, respectively, and theCwas overestimated by 23.9% compared with the intact moss biocrusts. Theλandkof the repacked cyanobacteria biocrusts were underestimated by 15.8% and 79.2%, respectively, and theCwas overestimated by 34.8% compared with the intact cyanobacteria biocrusts at theθvrange of 0 to 30%. Typically, this difference increased as theθvrises between repacked and intact biocrusts. Our new measurements provide evidence that the thermal properties of biocrusts were previously misjudged due to the measurement limitations imposed by their limited thickness when measured in situ. Biocrusts are likely more significant in regulating soil heat and temperature in drylands than was previously assumed. 
    more » « less
  3. Materials with low thermal conductivity are essential to providing thermal insulation to many technological systems, such as electronics, thermoelectrics and aerospace devices. Here, we report ultra-low thermal conductivity of two oxide materials. Sr 2 FeCoO 6−δ has a perovskite-type structure with oxygen vacancies. It shows a thermal conductivity of 0.5 W m −1 K −1 , which is lower than those reported for perovskite oxides. The incorporation of calcium to form Ca 2 FeCoO 6−δ , leads to a structural change and the formation of different coordination geometries around the transition metals. This structural transformation results in a remarkable enhancement of the thermal insulation properties, showing the ultra-low thermal conductivity of 0.05 W m −1 K −1 , which is one of the lowest values found among solid materials to date. A comparison to previously reported perovskite oxides, which show significantly inferior thermal insulation compared to our materials, points to the effect of oxygen-vacancies and their ordering on thermal conductivity. 
    more » « less
  4. Pulsed field gradient (PFG) NMR in combination with quasielastic neutron scattering (QENS) was used to investigate self-diffusion of water and acetone in Nafion membranes with and without immobilized vanillic acid (VA). Complementary characterization of these membranes was performed by small angle X-ray scattering (SAXS) and NMR relaxometry. This study was motivated by the recent data showing that an organic acid, such as VA, in Nafion can preserve its catalytic activity in the presence of water even at high intra-polymer water concentrations corresponding up to 100% ambient relative humidity. However, there is currently no clear understanding of how immobilized organic acid molecules influence the microscopic transport properties and related structural properties of Nafion. Microscopic diffusion data measured by PFG NMR and QENS are compared for Nafion with and without VA. For displacements smaller than the micrometer-sized domains previously reported for Nafion, the VA addition was not observed to lead to any significant changes in the water and/or acetone self-diffusivity measured by each technique inside Nafion. However, the reported PFG NMR data present evidence of a different influence of acetone concentration in the membranes with and without VA on the water permeance of the interfaces between neighboring micrometer-sized domains. The reported diffusion data are correlated with the results of SAXS structural characterization and NMR relaxation data for water and acetone. 
    more » « less
  5. null (Ed.)
    Breakdown of Fourier law of heat conduction at nanometer length scales significantly diminishes thermal conductivity, leading to challenges in thermal management of nanoelectronic applications. In this work we demonstrate using first-principles computations that biaxial strain can enhance k at a nanoscale in boron phosphide (BP), yielding nanoscale k values that exceed even the bulk k value of silicon. At a length scale of L = 200 nm, k of 4% biaxially strained BP is enhanced by 25% to a value of 150.4 W m −1 K −1 , relative to 120 W m −1 K −1 computed for unstrained BP at 300 K. The enhancement in k at a nanoscale is found to be due to the suppression of anharmonic scattering in the higher frequency range where phonon meanfreepaths are in nanometers, mediated by an increase in the phonon band gap in strained BP. Such a suppression in scattering enhances the meanfreepaths in the nanometer regime, thus enhancing nanoscale k . First-principles computations based on deriving harmonic and anharmonic force interactions from density-functional theory are used to provide detailed understanding of the effect in terms of individual scattering channels. 
    more » « less