Abstract Based on the prior O1–O2 observing runs, about 30% of the data collected by Advanced LIGO and Virgo in the next observing runs are expected to be single-interferometer data, i.e. they will be collected at times when only one detector in the network is operating in observing mode. Searches for gravitational-wave signals from supernova events do not rely on matched filtering techniques because of the stochastic nature of the signals. If a Galactic supernova occurs during single-interferometer times, separation of its unmodelled gravitational-wave signal from noise will be even more difficult due to lack of coherence between detectors. We present a novel machine learning method to perform single-interferometer supernova searches based on the standard LIGO-Virgo coherent WaveBurst pipeline. We show that the method may be used to discriminate Galactic gravitational-wave supernova signals from noise transients, decrease the false alarm rate of the search, and improve the supernova detection reach of the detectors.
more »
« less
QoQ: a Q-transform based test for gravitational wave transient events
Abstract The observation of transient gravitational waves (GWs) is hindered by the presence of transient noise, colloquially referred to as glitches. These glitches can often be misidentified as GWs by searches for unmodeled transients using the excess-power type of methods and sometimes even excite template waveforms for compact binary coalescences while using matched filter techniques. They thus create a significant background in the searches. This background is more critical in getting identified promptly and efficiently within the context of real-time searches for GW transients. Such searches are the ones that have enabled multi-messenger astrophysics with the start of the Advanced LIGO and Advanced Virgo data taking in 2015 and they will continue to enable the field for further discoveries. With this work we propose and demonstrate the use of a signal-based test that quantifies the fidelity of the time-frequency decomposition of the putative signal based on first principles on how astrophysical transients are expected to be registered in the detectors and empirically measuring the instrumental noise. It is based on the Q-transform and a measure of the occupancy of the corresponding time-frequency pixels over select time-frequency volumes; we call it ‘QoQ’. Our method shows a 40% reduction in the number of retraction of public alerts that were issued by the LIGO-Virgo-KAGRA collaborations during the third observing run with negligible loss in sensitivity. Receiver Operator Characteristic measurements suggest the method can be used in online and offline searches for transients, reducing their background significantly.
more »
« less
- Award ID(s):
- 2110576
- PAR ID:
- 10524735
- Publisher / Repository:
- IOPscience
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 41
- Issue:
- 1
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 015012
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we investigate the impact of transient noise artifacts, or glitches, on gravitational- wave inference from ground-based interferometer data, and test how modeling and subtracting these glitches affects the inferred parameters. Due to their time-frequency morphology, broadband glitches cause moderate to significant biasing of posterior distributions away from true values. In contrast, narrowband glitches induce negligible biasing effects, due to distinct signal and glitch morphologies. We inject simulated binary black hole signals into data containing three occurring glitch types from past LIGO-Virgo observing runs, and reconstruct both signal and glitch waveforms using BayesWave, a wavelet-based Bayesian analysis. We apply the standard LIGO-Virgo-KAGRA deglitching pro- cedure to the detector data, which consists of subtracting from calibrated LIGO data the glitch waveform estimated by the joint BayesWave inference. We produce posterior distributions on the parameters of the injected signal before and after subtracting the glitch, and we show that removing the transient noise effectively mitigates bias from broadband glitches. This study provides a baseline validation of existing techniques, while demonstrating waveform reconstruction improvements to the Bayesian algorithm for robust astrophysical characterization in glitch-prone detector data.more » « less
-
Abstract Understanding the noise in gravitational-wave detectors is central to detecting and interpreting gravitational-wave signals. Glitches are transient, non-Gaussian noise features that can have a range of environmental and instrumental origins. The Gravity Spy project uses a machine-learning algorithm to classify glitches based upon their time–frequency morphology. The resulting set of classified glitches can be used as input to detector-characterisation investigations of how to mitigate glitches, or data-analysis studies of how to ameliorate the impact of glitches. Here we present the results of the Gravity Spy analysis of data up to the end of the third observing run of advanced laser interferometric gravitational-wave observatory (LIGO). We classify 233981 glitches from LIGO Hanford and 379805 glitches from LIGO Livingston into morphological classes. We find that the distribution of glitches differs between the two LIGO sites. This highlights the potential need for studies of data quality to be individually tailored to each gravitational-wave observatory.more » « less
-
We present an enhanced method for the application of Gaussian mixture modeling (GMM) to the coherent WaveBurst (cWB) algorithm in the search for short-duration gravitational wave (GW) transients. The supervised machine learning method of GMM allows for the multidimensional distributions of noise and signal to be modeled over a set of representative attributes, which aids in the classification of GW signals against noise transients (glitches) in the data. We demonstrate that updating the approach to model construction eliminates bias previously seen in the GMM analysis, increasing the robustness and sensitivity of the analysis over a wider range of burst source populations. The enhanced methodology is applied to the generic burst all-sky short search in the LIGO-Virgo full third observing run (O3), marking the first application of GMM to the 3 detector Livingston-Hanford-Virgo network. For both 2- and 3- detector networks, we observe comparable sensitivities to an array of generic signal morphologies, with significant sensitivity improvements to waveforms in the low quality factor parameter space at false alarm rates of 1 per 100 years. This proves that GMM can effectively mitigate blip glitches, which are one of the most problematic sources of noise for unmodeled GW searches. The cWB-GMM search recovers similar numbers of compact binary coalescence (CBC) events as other cWB postproduction methods, and concludes on no new gravitational wave detection after known CBC events are removed. Published by the American Physical Society2024more » « less
-
Abstract Detecting gravitational waves (GWs) from coalescing compact binaries has become routine with ground-based detectors like Advanced LIGO and Advanced Virgo. However, beyond standard sources such as binary black holes and neutron stars and neutron star black holes, no exotic sources revealing new physics have been discovered. Detecting ultracompact objects, such as subsolar mass (SSM), offers a promising opportunity to explore diverse astrophysical populations. However, searching for these objects using standard matched-filtering techniques is computationally intensive due to the dense parameter space involved. This increasing computational demand not only challenges current search methodologies but also poses a significant obstacle for third-generation (3G) ground-based GW detectors. In the 3G detectors, signals are expected to be observed for tens of minutes and detection rates to reach one per minute. This requires efficient search strategies to manage the computational load of long-duration signal search. In this paper, we demonstrate how hierarchical search strategies can address the computational challenges associated with detecting long-duration signals in current detectors and the 3G era. Using SSM searches as an example, we show that optimizing data sampling rates and adjusting the number of templates in matched filtering at each stage of low-frequency searches can improve the signal-to-noise ratio by 6% and detection volume by 10%–20%. This sensitivity improvement is achieved with a 2.5-fold reduction in computational time compared to standard PyCBC searches. We also discuss how this approach could be adapted and refined for searches involving eccentric and precessing binaries with future detectors.more » « less
An official website of the United States government

