A host of important performance properties for metal–organic frameworks (MOFs) and other complex materials can be calculated by modeling statistical ensembles. The principle challenge is to develop accurate and computationally efficient interaction models for these simulations. Two major approaches are (i) ab initio molecular dynamics in which the interaction model is provided by an exchange–correlation theory ( e.g. , DFT + dispersion functional) and (ii) molecular mechanics in which the interaction model is a parameterized classical force field. The first approach requires further development to improve computational speed. The second approach requires further development to automate accurate forcefield parameterization. Because of the extreme chemical diversity across thousands of MOF structures, this problem is still mostly unsolved today. For example, here we show structures in the 2014 CoRE MOF database contain more than 8 thousand different atom types based on first and second neighbors. Our results showed that atom types based on both first and second neighbors adequately capture the chemical environment, but atom types based on only first neighbors do not. For 3056 MOFs, we used density functional theory (DFT) followed by DDEC6 atomic population analysis to extract a host of important forcefield precursors: partial atomic charges; atom-in-material (AIM) C 6 , C 8 , and C 10 dispersion coefficients; AIM dipole and quadrupole moments; various AIM polarizabilities; quantum Drude oscillator parameters; AIM electron cloud parameters; etc. Electrostatic parameters were validated through comparisons to the DFT-computed electrostatic potential. These forcefield precursors should find widespread applications to developing MOF force fields.
more »
« less
An automated protocol to construct flexibility parameters for classical forcefields: applications to metal–organic frameworks
In this work, forcefield flexibility parameters were constructed and validated for more than 100 metal-organic frameworks (MOFs). We used atom typing to identify bond types, angle types, and dihedral types associated with bond stretches, angle bends, dihedral torsions, and other flexibility interactions. Our work used Manz’s angle-bending and dihedral-torsion model potentials. For a crystal structure containing Natoms in its unit cell, the number of independent flexibility interactions is 3(Natoms – 1). Because the number of bonds, angles, and dihedrals is normally much larger than 3(Natoms – 1), these internal coordinates are redundant. To reduce (but not eliminate) this redundancy, our protocol prunes dihedral types in a way that preserves symmetry equivalency. Next, each dihedral type is classified as non-rotatable, hindered, rotatable, or linear. We introduce a smart selection method that identifies which particular torsion modes are important for each rotatable dihedral type. Then, we computed the force constants for all flexibility interactions together via LASSO regression (i.e., regularized linear least-squares fitting) of the training dataset. LASSO automatically identifies and removes unimportant forcefield interactions. For each MOF, the reference dataset was quantum-mechanically-computed in VASP via DFT with dispersion and included: (i) finite-displacement calculations along every independent atom translation mode, (ii) geometries randomly sampled via ab initio molecular dynamics (AIMD), (iii) the optimized ground-state geometry using experimental lattice parameters, and (iv) rigid torsion scans for each rotatable dihedral type. After training, the flexibility model was validated across geometries that were not part of the training dataset. For each MOF, we computed the goodness of fit (R-squared value) and the root-mean-squared error (RMSE) separately for the training and validation datasets. We compared flexibility models with and without bond-bond cross terms. Even without cross terms, the model yielded R-squared values of 0.910 (avg across all MOFs) ± 0.018 (st. dev.) for atom-in-material forces in the validation datasets. Our SAVESTEPS protocol should find widespread applications to parameterize flexible forcefields for material datasets. We performed molecular dynamics simulations using these flexibility parameters to compute heat capacities and thermal expansion coefficients for two MOFs.
more »
« less
- Award ID(s):
- 1555376
- PAR ID:
- 10524871
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 14
- Issue:
- 31
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 22714 to 22762
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Databases of experimentally-derived metal–organic framework (MOF) crystal structures are useful for large-scale computational screening to identify which MOFs are best-suited for particular applications. However, these crystal structures must be cleaned to identify and/or correct various artifacts. The recently published 2019 CoRE MOF database (Chung et al. , J. Chem. Eng. Data , 2019, 64 , 5985–5998) reported thousands of experimentally-derived crystal structures that were partially cleaned to remove solvent molecules, to identify hundreds of disordered structures (approximately thirty of those were corrected), and to manually correct approximately 100 structures ( e.g. , adding missing hydrogen atoms). Herein, further cleaning of the 2019 CoRE MOF database is performed to identify structures with misbonded or isolated atoms: (i) structures containing an isolated atom, (ii) structures containing atoms too close together ( i.e. , overlapping atoms), (iii) structures containing a misplaced hydrogen atom, (iv) structures containing an under-bonded carbon atom (which might be caused by missing hydrogen atoms), and (v) structures containing an over-bonded carbon atom. This study should not be viewed as the final cleaning of this database, but rather as progress along the way towards the goal of someday achieving a completely cleaned set of experimentally-derived MOF crystal structures. We performed atom typing for all of the accepted structures to identify those structures that can be parameterized by previously reported forcefield precursors (Chen and Manz, RSC Adv ., 2019, 9 , 36492–36507). We report several forcefield precursors ( e.g. , net atomic charges, atom-in-material polarizabilities, atom-in-material dispersion coefficients, electron cloud parameters, etc. ) for more than five thousand MOFs in the 2019 CoRE MOF database.more » « less
-
In the title compound, C10H12N2O4, the four substituents lie out of the phenyl plane by varying degrees. The methyl C atom lies 0.019 (3) A ˚ out of plane, while the methoxy O and C atoms lie 0.067 (2) and 0.042 (3) A ˚ out of plane, respectively, with the C—C—O—C torsion angle being 3.3 (2). The plane of the nitro group is twisted out of the phenyl plane, forming a dihedral angle of 12.03 (9) with it. The acetamide substituent is twisted considerably more out of the phenyl plane, forming a dihedral angle of 47.24 (6) with it. In the extended structure, the acetamide NH group donates a hydrogen bond to an acetamide carbonyl O atom, thereby forming chains propagating in the [010] direction.more » « less
-
Two bis-carbamoylmethylphosphine oxide compounds, namely {[(3-{[2-(diphenylphosphinoyl)ethanamido]methyl}benzyl)carbamoyl]methyl}diphenylphosphine oxide, C 36 H 34 N 2 O 4 P 2 , (I), and diethyl [({2-[2-(diethoxyphosphinoyl)ethanamido]ethyl}carbamoyl)methyl]phosphonate, C 14 H 30 N 2 O 8 P 2 , (II), were synthesized via nucleophilic acyl substitution reactions between an ester and a primary amine. Hydrogen-bonding interactions are present in both crystals, but these interactions are intramolecular in the case of compound (I) and intermolecular in compound (II). Intramolecular π–π stacking interactions are also present in the crystal of compound (I) with a centroid–centroid distance of 3.9479 (12) Å and a dihedral angle of 9.56 (12)°. Intermolecular C—H...π interactions [C...centroid distance of 3.622 (2) Å, C—H...centroid angle of 146°] give rise to supramolecular sheets that lie in the ab plane. Key geometric features for compound (I) involve a nearly planar, trans- amide group with a C—N—C—C torsion angle of 169.12 (17)°, and a torsion angle of −108.39 (15)° between the phosphine oxide phosphorus atom and the amide nitrogen atom. For compound (II), the electron density corresponding to the phosphoryl group was disordered, and was modeled as two parts with a 0.7387 (19):0.2613 (19) occupancy ratio. Compound (II) also boasts a trans -amide group that approaches planarity with a C—N—C—C torsion angle of −176.50 (16)°. The hydrogen bonds in this structure are intermolecular, with a D ... A distance of 2.883 (2) Å and a D —H... A angle of 175.0 (18)° between the amide hydrogen atom and the P=O oxygen atom. These non-covalent interactions create ribbons that run along the b -axis direction.more » « less
An official website of the United States government

