skip to main content


Title: A collection of forcefield precursors for metal–organic frameworks
A host of important performance properties for metal–organic frameworks (MOFs) and other complex materials can be calculated by modeling statistical ensembles. The principle challenge is to develop accurate and computationally efficient interaction models for these simulations. Two major approaches are (i) ab initio molecular dynamics in which the interaction model is provided by an exchange–correlation theory ( e.g. , DFT + dispersion functional) and (ii) molecular mechanics in which the interaction model is a parameterized classical force field. The first approach requires further development to improve computational speed. The second approach requires further development to automate accurate forcefield parameterization. Because of the extreme chemical diversity across thousands of MOF structures, this problem is still mostly unsolved today. For example, here we show structures in the 2014 CoRE MOF database contain more than 8 thousand different atom types based on first and second neighbors. Our results showed that atom types based on both first and second neighbors adequately capture the chemical environment, but atom types based on only first neighbors do not. For 3056 MOFs, we used density functional theory (DFT) followed by DDEC6 atomic population analysis to extract a host of important forcefield precursors: partial atomic charges; atom-in-material (AIM) C 6 , C 8 , and C 10 dispersion coefficients; AIM dipole and quadrupole moments; various AIM polarizabilities; quantum Drude oscillator parameters; AIM electron cloud parameters; etc. Electrostatic parameters were validated through comparisons to the DFT-computed electrostatic potential. These forcefield precursors should find widespread applications to developing MOF force fields.  more » « less
Award ID(s):
1555376
NSF-PAR ID:
10123994
Author(s) / Creator(s):
;
Date Published:
Journal Name:
RSC Advances
Volume:
9
Issue:
63
ISSN:
2046-2069
Page Range / eLocation ID:
36492 to 36507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Databases of experimentally-derived metal–organic framework (MOF) crystal structures are useful for large-scale computational screening to identify which MOFs are best-suited for particular applications. However, these crystal structures must be cleaned to identify and/or correct various artifacts. The recently published 2019 CoRE MOF database (Chung et al. , J. Chem. Eng. Data , 2019, 64 , 5985–5998) reported thousands of experimentally-derived crystal structures that were partially cleaned to remove solvent molecules, to identify hundreds of disordered structures (approximately thirty of those were corrected), and to manually correct approximately 100 structures ( e.g. , adding missing hydrogen atoms). Herein, further cleaning of the 2019 CoRE MOF database is performed to identify structures with misbonded or isolated atoms: (i) structures containing an isolated atom, (ii) structures containing atoms too close together ( i.e. , overlapping atoms), (iii) structures containing a misplaced hydrogen atom, (iv) structures containing an under-bonded carbon atom (which might be caused by missing hydrogen atoms), and (v) structures containing an over-bonded carbon atom. This study should not be viewed as the final cleaning of this database, but rather as progress along the way towards the goal of someday achieving a completely cleaned set of experimentally-derived MOF crystal structures. We performed atom typing for all of the accepted structures to identify those structures that can be parameterized by previously reported forcefield precursors (Chen and Manz, RSC Adv ., 2019, 9 , 36492–36507). We report several forcefield precursors ( e.g. , net atomic charges, atom-in-material polarizabilities, atom-in-material dispersion coefficients, electron cloud parameters, etc. ) for more than five thousand MOFs in the 2019 CoRE MOF database. 
    more » « less
  2. Polarizabilities and London dispersion forces are important to many chemical processes. Force fields for classical atomistic simulations can be constructed using atom-in-material polarizabilities and C n ( n = 6, 8, 9, 10…) dispersion coefficients. This article addresses the key question of how to efficiently assign these parameters to constituent atoms in a material so that properties of the whole material are better reproduced. We develop a new set of scaling laws and computational algorithms (called MCLF) to do this in an accurate and computationally efficient manner across diverse material types. We introduce a conduction limit upper bound and m -scaling to describe the different behaviors of surface and buried atoms. We validate MCLF by comparing results to high-level benchmarks for isolated neutral and charged atoms, diverse diatomic molecules, various polyatomic molecules ( e.g. , polyacenes, fullerenes, and small organic and inorganic molecules), and dense solids (including metallic, covalent, and ionic). We also present results for the HIV reverse transcriptase enzyme complexed with an inhibitor molecule. MCLF provides the non-directionally screened polarizabilities required to construct force fields, the directionally-screened static polarizability tensor components and eigenvalues, and environmentally screened C 6 coefficients. Overall, MCLF has improved accuracy compared to the TS-SCS method. For TS-SCS, we compared charge partitioning methods and show DDEC6 partitioning yields more accurate results than Hirshfeld partitioning. MCLF also gives approximations for C 8 , C 9 , and C 10 dispersion coefficients and quantum Drude oscillator parameters. This method should find widespread applications to parameterize classical force fields and density functional theory (DFT) + dispersion methods. 
    more » « less
  3. Abstract

    This review spotlights the role of atomic‐level modeling in research on metal‐organic frameworks (MOFs), especially the key methodologies of density functional theory (DFT), Monte Carlo (MC) simulations, and molecular dynamics (MD) simulations. The discussion focuses on how periodic and cluster‐based DFT calculations can provide novel insights into MOF properties, with a focus on predicting structural transformations, understanding thermodynamic properties and catalysis, and providing information or properties that are fed into classical simulations such as force field parameters or partial charges. Classical simulation methods, highlighting force field selection, databases of MOFs for high‐throughput screening, and the synergistic nature of MC and MD simulations, are described. By predicting equilibrium thermodynamic and dynamic properties, these methods offer a wide perspective on MOF behavior and mechanisms. Additionally, the incorporation of machine learning (ML) techniques into quantum and classical simulations is discussed. These methods can enhance accuracy, expedite simulation setup, reduce computational costs, as well as predict key parameters, optimize geometries, and estimate MOF stability. By charting the growth and promise of computational research in the MOF field, the aim is to provide insights and recommendations to facilitate the incorporation of computational modeling more broadly into MOF research.

     
    more » « less
  4. We present two algorithms to compute system-specific polarizabilities and dispersion coefficients such that required memory and computational time scale linearly with increasing number of atoms in the unit cell for large systems. The first algorithm computes the atom-in-material (AIM) static polarizability tensors, force-field polarizabilities, and C 6 , C 8 , C 9 , C 10 dispersion coefficients using the MCLF method. The second algorithm computes the AIM polarizability tensors and C 6 coefficients using the TS-SCS method. Linear-scaling computational cost is achieved using a dipole interaction cutoff length function combined with iterative methods that avoid large dense matrix multiplies and large matrix inversions. For MCLF, Richardson extrapolation of the screening increments is used. For TS-SCS, a failproof conjugate residual (FCR) algorithm is introduced that solves any linear equation system having Hermitian coefficients matrix. These algorithms have mathematically provable stable convergence that resists round-off errors. We parallelized these methods to provide rapid computation on multi-core computers. Excellent parallelization efficiencies were obtained, and adding parallel processors does not significantly increase memory requirements. This enables system-specific polarizabilities and dispersion coefficients to be readily computed for materials containing millions of atoms in the unit cell. The largest example studied herein is an ice crystal containing >2 million atoms in the unit cell. For this material, the FCR algorithm solved a linear equation system containing >6 million rows, 7.57 billion interacting atom pairs, 45.4 billion stored non-negligible matrix components used in each large matrix-vector multiplication, and ∼19 million unknowns per frequency point (>300 million total unknowns). 
    more » « less
  5. Metal-organic frameworks (MOFs) are nanoporous compounds composed of metal ions and organic linkers. MOFs play an important role in industrial applications such as gas separation, gas purification, and electrolytic catalysis. Important MOF properties such a potential energy are currently computed via techniques such as density functional theory (DFT). Although DFT provides accurate results, it is computationally costly. We propose a machine learning approach for estimating the potential energy of candidate MOFs, decomposing it into separate pair-wise atomic interactions using a graph neural network. Such a technique will allow high-throughput screening of candidates MOFs. We also generate a database of 50,000 spatial configurations and high quality potential energy values using DFT. 
    more » « less