Abstract Microbial biofilms are of critical concern because of their recalcitrance to antimicrobials. Cold atmospheric plasmas (CAP) represent a promising biofilm remediation strategy as they generate reactive oxygen and nitrogen species (RONS), but mechanisms underpinning CAP‐biofilm interactions remain unknown. We assess the impact of treatment modality on biofilm inactivation and show that CAP killing ofStaphylococcus aureusbiofilms is dependent on treatment conditions, including solution chemistry. In dry treatments, biofilms are locally ablated due to plasma‐produced O flux. For saline‐submerged biofilms, while we show that ClO−is generated at high concentrations in larger treatment volumes, CAP inactivation at low ClO−concentrations implicates other reaction pathways. Finally, we demonstrate CAP efficacy over conventional antimicrobials, underscoring its promise as a biofilm treatment approach.
more »
« less
A hierarchal model for bacterial cell inactivation in solution by direct and indirect treatment using cold atmospheric plasmas
Abstract Cold atmospheric plasma devices have shown promise for a variety of plasma medical applications, including wound healing and bacterial inactivation often performed in liquids. In the latter application, plasma-produced reactive oxygen and nitrogen species (RONS) interact with and damage bacterial cells, though the exact mechanism by which cell damage occurs is unclear. Computational models can help elucidate relationships between plasma-produced RONS and cell killing by enabling direct comparison between dissimilar plasma devices and by examining the effects of changing operating parameters in these devices. In biological applications, computational models of plasma-liquid interactions would be most effective in design and optimization of plasma devices if there is a corresponding prediction of the biological outcome. In this work, we propose a hierarchal model for planktonic bacterial cell inactivation by plasma produced RONS in liquid. A previously developed reaction mechanism for plasma induced modification of cysteine was extended to provide a basis for cell killing by plasma-produced RONS. Results from the model are compared to literature values to provide proof of concept. Differences in time to bacterial inactivation as a function of plasma operating parameters including gas composition and plasma source configuration are discussed. Results indicate that optimizing gas-phase reactive nitrogen species production may be key in the design of plasma devices for disinfection.
more »
« less
- PAR ID:
- 10524977
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics D: Applied Physics
- Volume:
- 57
- Issue:
- 40
- ISSN:
- 0022-3727
- Format(s):
- Medium: X Size: Article No. 405207
- Size(s):
- Article No. 405207
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mechanisms for the cold atmospheric plasma (CAP) treatment of cells in solution are needed for more optimum design of plasma devices for wound healing, cancer treatment, and bacterial inactivation. However, the complexity of organic molecules on cell membranes makes understanding mechanisms that result in modifications (i.e. oxidation) of such compounds difficult. As a surrogate to these systems, a reaction mechanism for the oxidation of cysteine in CAP activated water was developed and implemented in a 0-dimensional (plug-flow) global plasma chemistry model with the capability of addressing plasma-liquid interactions. Reaction rate coefficients for organic reactions in water were estimated based on available data in the literature or by analogy to gas-phase reactions. The mechanism was validated by comparison to experimental mass-spectrometry data for COST-jets sustained in He/O2, He/H2O and He/N2/O2mixtures treating cysteine in water. Results from the model were used to determine the consequences of changing COST-jet operating parameters, such as distance from the substrate and inlet gas composition, on cysteine oxidation product formation. Results indicate that operating parameters can be adjusted to select for desired cysteine oxidation products, including nitrosylated products.more » « less
-
Cold atmospheric pressure plasma (CAPP) treatment is a highly effective method of protecting seeds, plants, flowers, and trees from diseases and infection and significantly increasing crop yields. Here we found that cold atmospheric pressure He-plasma jet (CAPPJ) can also cause side effects and damage to plants if the plasma exposure time is too long. Reactive oxygen and nitrogen species (RONS), electromagnetic fields, and ultraviolet photons emitted by CAPPJ can cause both positive and negative effects on plants. CAPPJ can interact with biological tissue surfaces. The plasma lamp has no visible side effects on Aloe vera plants, cabbage, and tomatoes. A plasma lamp and a cold atmospheric pressure plasma He-jet cause strong electrical signaling in plants with a very high amplitude with frequencies equal to the frequency of plasma generation. The use of plasma lamps for electrostimulation of biological tissues can help to avoid side processes in biological tissues associated with the generation of RONS, UV photons, and direct interaction with cold plasma. CAPP technology can play an important role in agriculture, medicine, the food industry, chemistry, surface science, material science, and engineering applications without side effects if the plasma exposure is short enough.more » « less
-
Cold atmospheric pressure plasma (CAPP) is widely used in medicine for the treatment of diseases and disinfection of bio-tissues due to its antibacterial, antiviral, and antifungal properties. In agriculture, CAPP accelerates the imbibition and germination of seeds and significantly increases plant productivity. Plasma is also used to fix molecular nitrogen. CAPP can produce reactive oxygen and nitrogen species (RONS). Plasma treatment of bio-tissue can lead to numerous side effects such as lipid peroxidation, genotoxic problems, and DNA damage. The mechanisms of occurring side effects when treating various organisms with cold plasma are unknown since RONS, UV-Vis light, and multicomponent biological tissues are simultaneously involved in a heterogeneous environment. Here, we found that CAPP can induce in vitro oxidation of the most common water-soluble redox compounds in living cells such as NADH, NADPH, and vitamin C at interfaces between air, CAPP, and water. CAPP is not capable of reducing NAD+ and 1,4-benzoquinone, despite the presence of free electrons in CAPP. Prolonged plasma treatment of aqueous solutions of vitamin C, 1,4-hydroquinone, and 1,4-benzoquinone respectively, leads to their decomposition. Studies of the mechanisms in plasma-induced processes can help to prevent side effects in medicine, agriculture, and food disinfection.more » « less
-
A Cold Atmospheric Plasma (CAP) apparatus was designed and developed for SARS-CoV-2 killing as evaluated by pseudotyped viral infectivity assays. The reactive species generated by the plasma system was fully characterized by using Optical Emission Spectroscopy (OES) measurement under given conditions such as plasma power, flow rate, and treatment time. A variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) were identified from plasma plume with energies of 15–72 eV in the frequency range between 500–1000 nm. Systematic virus killing experiments were carried out, and the efficacy of CAP treatment in reducing SARS-CoV-2 viral infectivity was significant following treatment for 8 s, with further enhancement of killing upon longer exposures of 15–120 s. We correlated killing efficacy with the reactive species in terms of type, intensity, energy, and frequency. These experimental results demonstrate effective cold plasma virus killing via ROS and RNS under ambient conditions.more » « less
An official website of the United States government
