skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Islands of chaos in a sea of periodic earthquakes
Long paleoseismic records on mature faults suggest potentially chaotic recurrence patterns with cycles of strain accumulation and release that challenge simple slip-or time-predictable recurrence models. In apparent contradiction, the relatively small variability of earthquake recurrence times on these faults is often characterized as quasi-periodic, implying much regularity in the underlying mechanics. To reconcile these observations, we simulate one of the longest paleoearthquake records – the 24-event record from the Hokuri Creek site on the Alpine fault in New Zealand – using a physical model of rate-and state-dependent friction. In a parameter space formed by three non-dimensional parameters, a sea of parameters produces periodic earthquake recurrence behavior. Only a few models are characterized by fundamentally aperiodic recurrence patterns, in parametric islands of chaos. Complex models that produce partial and full ruptures of the Alpine fault can explain the earthquake recurrence behavior of the Alpine fault, reproducing up to 11 consecutive events of the Hokuri Creek paleoseismic record within uncertainties. The breakdown of the slip-and time-predictable recurrence patterns occurs for faults that are much longer than the characteristic nucleation size. The quasi-periodicity of seismic cycles is compatible with the nonlinear and potentially chaotic underlying mechanical system, posing an inherent challenge to long-term earthquake prediction.  more » « less
Award ID(s):
1848192
PAR ID:
10525032
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Earth and Planetary Science Letters
Volume:
618
Issue:
C
ISSN:
0012-821X
Page Range / eLocation ID:
118274
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Active traces of the southern Fairweather fault were revealed by light detection and ranging (lidar) and show evidence for transpressional deformation between North America and the Yakutat block in southeast Alaska. We map the Holocene geomorphic expression of tectonic deformation along the southern 30 km of the Fairweather fault, which ruptured in the 1958 moment magnitude 7.8 earthquake. Digital maps of surficial geology, geomorphology, and active faults illustrate both strike-slip and dip-slip deformation styles within a 10°–30° double restraining bend where the southern Fairweather fault steps offshore to the Queen Charlotte fault. We measure offset landforms along the fault and calibrate legacy 14C data to reassess the rate of Holocene strike-slip motion (≥49 mm/yr), which corroborates published estimates that place most of the plate boundary motion on the Fairweather fault. Our slip-rate estimates allow a component of oblique-reverse motion to be accommodated by contractional structures west of the Fairweather fault consistent with geodetic block models. Stratigraphic and structural relations in hand-dug excavations across two active fault strands provide an incomplete paleoseismic record including evidence for up to six surface ruptures in the past 5600 years, and at least two to four events in the past 810 years. The incomplete record suggests an earthquake recurrence interval of ≥270 years—much longer than intervals <100 years implied by published slip rates and expected earthquake displacements. Our paleoseismic observations and map of active traces of the southern Fairweather fault illustrate the complexity of transpressional deformation and seismic potential along one of Earth's fastest strike-slip plate boundaries. 
    more » « less
  2. Abstract The loss of life and economic consequences caused by several recent earthquakes demonstrate the importance of developing seismically safe building codes. The quantification of seismic hazard, which describes the likelihood of earthquake‐induced ground shaking at a site for a specific time period, is a key component of a building code, as it helps ensure that structures are designed to withstand the ground shaking caused by a potential earthquake. Geologic or geomorphic data represent important inputs to the most common seismic hazard model (probabilistic seismic hazard analyses, or PSHAs), as they can characterize the magnitudes, locations, and types of earthquakes that occur over long intervals (thousands of years). However, several recent earthquakes and a growing body of work challenge many of our previous assumptions about the characteristics of active faults and their rupture behavior, and these complexities can be challenging to accurately represent in PSHA. Here, we discuss several of the outstanding challenges surrounding geologic and geomorphic data sets frequently used in PSHA. The topics we discuss include how to utilize paleoseismic records in fault slip rate estimates, understanding and modeling earthquake recurrence and fault complexity, the development and use of fault‐scaling relationships, and characterizing enigmatic faults using topography. Making headway in these areas will likely require advancements in our understanding of the fundamental science behind processes such as fault triggering, complex rupture, earthquake clustering, and fault scaling. Progress in these topics will be important if we wish to accurately capture earthquake behavior in a variety of settings using PSHA in the future. 
    more » « less
  3. Abstract Understanding mechanical conditions that lead to complexity in earthquakes is important to seismic hazard analysis. In this study, we simulate physics‐based multicycle dynamic models of the San Andreas fault (Carrizo through San Bernardino sections) and the San Jacinto fault (Claremont and Clark strands). We focus on a complex fault geometry based on the Southern California Earthquake Center Community Fault Model and its effect over multiple earthquake cycles. Using geodetically derived strain rates, we validate the models against geologic slip rates and recurrence intervals at various paleoseismic sites. We find that the interactions among fault geometry, dynamic rupture and interseismic stress accumulation produce stress heterogeneities, leading to rupture segmentation and variability in earthquake recurrence. Our models produce earthquakes with rupture extents similar to a recent comprehensive paleoseismic catalog. The “earthquake gates” of the Big Bend and the Cajon Pass occasionally impede dynamic ruptures. The angle of compression, which is the subtraction of the maximum shear strain rate direction from the local fault strike, can better determine the likelihood of the impedance of restraining bends to dynamic ruptures. Because the Big Bend has an angle of compression of ∼20°, ruptures that traverse the Big Bend, like the 1857 Fort Tejon earthquake, are more frequent than expected based on empirical relations which predict the ∼40° restraining bend to terminate most ruptures. Our models indicate that large ruptures tend to initiate north of the Big Bend and propagate southwards, similar to the 1857 earthquake, providing critical information for ground shaking assessment in the region. 
    more » « less
  4. Abstract Subduction forearcs are subject to seismic hazard from upper plate faults that are often invisible to instrumental monitoring networks. Identifying active faults in forearcs therefore requires integration of geomorphic, geologic, and paleoseismic data. We demonstrate the utility of a combined approach in a densely populated region of Vancouver Island, Canada, by combining remote sensing, historical imagery, field investigations, and shallow geophysical surveys to identify a previously unrecognized active fault, theXEOLXELEK‐Elk Lake fault, in the northern Cascadia forearc, ∼10 km north of the city of Victoria. Lidar‐derived digital terrain models and historical air photos show a ∼2.5‐m‐high scarp along the surface of a Quaternary drumlinoid ridge. Paleoseismic trenching and electrical resistivity tomography surveys across the scarp reveal a single reverse‐slip earthquake produced a fault‐propagation fold above a blind southwest‐dipping fault. Five geologically plausible chronological models of radiocarbon dated charcoal constrain the likely earthquake age to between 4.7 and 2.3 ka. Fault‐propagation fold modeling indicates ∼3.2 m of reverse slip on a blind, 50° southwest‐dipping fault can reproduce the observed deformation. Fault scaling relations suggest aM6.1–7.6 earthquake with a 13 to 73‐km‐long surface rupture and 2.3–3.2 m of dip slip may be responsible for the deformation observed in the paleoseismic trench. An earthquake near this magnitude in Greater Victoria could result in major damage, and our results highlight the importance of augmenting instrumental monitoring networks with remote sensing and field studies to identify and characterize active faults in similarily challenging environments. 
    more » « less
  5. Abstract Slow slip is part of the earthquake cycle, but the processes controlling this phenomenon in space and time are poorly constrained. Hematite, common in continental fault zones, exhibits unique textures and (U-Th)/He thermochronometry data patterns reflecting different slip rates. We investigated networks of small hematite-coated slip surfaces in basement fault damage of exhumed strike-slip faults that connect to the southern San Andreas fault in a flower structure in the Mecca Hills, California, USA. Scanning electron microscopy shows these millimeter-thick surfaces exhibit basal hematite injection veins and layered veinlets comprising nanoscale, high-aspect-ratio hematite plates akin to phyllosilicates. Combined microstructural and hematite (U-Th)/He data (n = 64 new, 24 published individual analyses) record hematite mineralization events ca. 0.8 Ma to 0.4 Ma at <1.5 km depth. We suggest these hematite faults formed via fluid overpressure, and then hematite localized repeated subseismic slip, creating zones of shallow off-fault damage as far as 4 km orthogonal to the trace of the southern San Andreas fault. Distributed hematite slip surfaces develop by, and then accommodate, transient slow slip, potentially dampening or distributing earthquake energy in shallow continental faults. 
    more » « less