The East Anatolian fault in Turkey exhibits along-strike rupture segmentation, typically resulting in earthquakes with moment magnitude (Mw) up to 7.5 that are confined to individual segments. However, on 6 February 2023, a catastrophic Mw 7.8 earthquake struck near Kahramanmaraş (southeastern Turkey), defying previous expectations by rupturing multiple segments spanning over 300 km and overcoming multiple geometric complexities. We explore the mechanics of successive single- and multi-segment ruptures using numerical models of the seismic cycle calibrated to historical earthquake records and geodetic observations of the 2023 doublet. Our model successfully reproduces the observed historical rupture segmentation and the rare occurrence of multi-segment earthquakes. The segmentation pattern is influenced by variations in long-term slip rate along strike across the kinematically complex fault network between the Arabian and Anatolian plates. Our physics-based seismic cycle simulations shed light on the long-term variability of earthquake size that shapes seismic hazards.
more »
« less
The role of fault structural evolution on long-term slip rates and seismic cycles in the Himalayan orogenic wedge
The collision between the Indian and Eurasian plates drives tectonic uplift and evolving landscapes over geological time scales. Much of this evolution is accommodated by seismic processes. However, the relationship between long-term geological processes and short-term seismic cycles is challenging to unravel because of their disparate spatial and temporal scales. Here, we investigate the impact of the internal dynamics of the orogenic wedge on the cycle of Himalayan earthquakes, linking structural models with seismic cycle simulations to show how earthquake patterns may have changed over time. Balanced cross-sections with fault-bend folding at different stages of structural evolution show that frontal thrusts in the Himalayas accumulate slip at different rates across the wedge and over time, depending on the architectural layout of the thrust sheet. Along-strike variations in structural evolution along the Himalayan front may lead to lateral and down-dip segmentation of long-term slip rate, affecting the magnitude and recurrence patterns of earthquakes. Spatio-temporal earthquake patterns may shift every ∼0.3-1.3 Myr as the hanging wall evolves, with implications for seismic hazards in the Nepal Himalayas.
more »
« less
- Award ID(s):
- 1848192
- PAR ID:
- 10525040
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Earth and Planetary Science Letters
- Volume:
- 630
- Issue:
- C
- ISSN:
- 0012-821X
- Page Range / eLocation ID:
- 118599
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
So far in this century, six very large–magnitude earthquakes ( M W ≥ 7.8) have ruptured separate portions of the subduction zone plate boundary of western South America along Ecuador, Peru, and Chile. Each source region had last experienced a very large earthquake from 74 to 261 y earlier. This history led to their designation in advance as seismic gaps with potential to host future large earthquakes. Deployments of geodetic and seismic monitoring instruments in several of the seismic gaps enhanced resolution of the subsequent faulting processes, revealing preevent patterns of geodetic slip deficit accumulation and heterogeneous coseismic slip on the megathrust fault. Localized regions of large slip, or asperities, appear to have influenced variability in how each source region ruptured relative to prior events, as repeated ruptures have had similar, but not identical slip distributions. We consider updated perspectives of seismic gaps, asperities, and geodetic locking to assess current very large earthquake hazard along the South American subduction zone, noting regions of particular concern in northern Ecuador and Colombia (1958/1906 rupture zone), southeastern Peru (southeasternmost 1868 rupture zone), north Chile (1877 rupture zone), and north-central Chile (1922 rupture zone) that have large geodetic slip deficit measurements and long intervals (from 64 to 154 y) since prior large events have struck those regions. Expanded geophysical measurements onshore and offshore in these seismic gaps may provide critical information about the strain cycle and fault stress buildup late in the seismic cycle in advance of the future great earthquakes that will eventually strike each region.more » « less
-
null (Ed.)Earthquake prediction is the holy grail of seismology. Many previous studies have searched for robust precursory signals to inform us of imminent earthquakes, the most significant of which are seen in laboratory experiments as temporal changes in pressure and shear wave velocities during the seismic cycle. Similar changes are seen in natural faults and the surrounding structurally complex network of fractures with nested hierarchy of localized deformation, referred to as fault damage zone. However, little is known whether such temporal changes in material properties contains any precursory signals for imminent earthquakes.Conversely, the effect of precursory velocity changes on the seismic cycle is not well understood. By imposing shear wave velocity changes in fault damage zones, we investigate the effects of these precursors on multiple stages of the seismic cycle, including nucleation, coseismic, postseismic, and interseismic stages. We perform 2D fully dynamic earthquake cycle simulations with a fault-parallel damage zone for strike-slip fault systems with antiplane geometry. The fault is governed by rate-state-dependent friction laws, and the fault damage zone material is considered elastic. Our preliminary results show that the temporal onset of shear wave velocity drop causes a reduction in earthquake recurrence intervals over the seismic cycle. Furthermore, a dynamic earthquake rupture within the seismic cycle terminates much faster and abruptly in models with precursory velocity changes. We will also discuss how the precursory velocity changes affect the fault-slip behavior, including fast-slip, slow-slip, and aseismic creep, for different amplitudes of shear wave velocity changes at different compliance contrast of the fault damage zones. Our results highlight the importance of short and long-term monitoring of fault zone structures for better assessment of regional seismic hazard.more » « less
-
Predicting the onset and timing of fault failure is one of the ultimate goals of seismology. However, our current understanding of the earthquake preparation and nucleation process is limited. One direction towards understanding this process is looking at precursory signals preceding large earthquakes. Previous laboratory experiments have studied robust precursory signals, observed as temporal changes in pressure and shear wave velocities during the seismic cycle. The effects of such precursory velocity changes on the seismic cycle are not well understood. We use numerical models to simulate fully-dynamic earthquake cycles in 2D strike-slip fault systems with antiplane geometry, surrounded by a narrow fault-parallel damage zone. By imposing shear wave velocity changes inside fault damage zones, we investigate the effects of these precursors on multiple stages of the seismic cycle, including nucleation, coseismic, postseismic, and interseismic stages. Our modeling results show a wide spectrum of fault-slip behaviors including fast earthquakes, slow-slip events, and variable creep. One primary effect of the imposed velocity precursor is the facilitation of the otherwise slow-slip event to grow into a fully dynamic earthquake. Furthermore, the onset time of these precursors have significant effects on the nucleation phase of the earthquakes, and earlier onset of precursors causes the earthquakes to nucleate earlier with a smaller nucleation size. Our results highlight the importance of short and long-term monitoring of fault zone structures for better assessment of regional seismic hazard.more » « less
-
Abstract We develop an earthquake simulator to study the partitioning of seismic/aseismic slip and dynamics of Earthquakes on a Heterogeneous strike‐slip Fault (HFQsim) using a generalized model of a discrete fault governed by static/dynamic friction and creep in an elastic half‐space. Previous versions of the simulator were shown to produce various realistic seismicity patterns (e.g., frequency‐magnitude event statistics, hypocenter and slip distributions, temporal occurrence) using friction levels and creep properties that vary in space but are fixed in time. The new simulator incorporates frictional heat generation by earthquake slip leading to temperature rises, subsequent diffusion cooling into the half space, and time‐dependent creep on the fault. The model assumes a power law dependence of creep velocity on the local shear stress, with temperature‐dependent coefficients based on the Arrhenius equation. Temperature rises due to seismic slip produce increased aseismic slip, which can lead to further stress concentrations, aftershocks, and heat generation in a feedback loop. The partitioning of seismic/aseismic slip and space‐time evolution of seismicity are strongly affected by the temperature changes on the fault. The results are also affected significantly by the difference between the static and kinetic friction levels. The model produces realistic spatio‐temporal distribution of seismicity, transient aseismic slip patterns, mainshock‐aftershock sequences, and a bimodal distribution of earthquakes with background and clustered events similar to observations. The HFQsim may be used to clarify relations between fault properties and different features of seismicity and aseismic slip, and to improve the understanding of failure patterns preceding large earthquakes.more » « less
An official website of the United States government

